-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdata.py
159 lines (124 loc) · 5.64 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from torchvision import transforms
import glob
import torch
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
my_transform = transforms.Compose([transforms.ToTensor()])
class MyDataset(Dataset):
def __init__(self, batch_num, name='OpenLORIS-Object', mode='train', own_transform=None, factor='clutter'):
batch_num += 1
self.transform = own_transform
self.imgs = []
self.labels = []
if name == 'OpenLORIS-Object':
datapath = glob.glob('{}/{}/task{}/*'.format(factor, mode, batch_num))
datapath = sorted([p for p in datapath if p[-1].isdigit()])
for i in range(len(datapath)):
temp = glob.glob(datapath[i] + '/*.jpg')
self.imgs.extend([Image.open(x).convert('RGB').resize((224, 224)) for x in temp])
self.labels.extend([i] * len(temp))
print(" --> batch{} -{}set consisting of {} samples".format(batch_num, mode, len(self)))
elif name == 'cifar':
for i in range(20):
temp = glob.glob('{}/task{}/{}/*.png'.format(mode, batch_num, i + 1))
self.imgs.extend([Image.open(x).convert('RGB') for x in temp])
self.labels.extend([i] * len(temp))
print(" --> batch{} -{}set consisting of {} samples".format(batch_num, mode, len(self)))
elif name == 'mnist':
for i in range(10):
temp = glob.glob('{}/task{}/{}/*.png'.format(mode, batch_num, i + 1))
self.imgs.extend([Image.open(x).convert('RGB').resize((32, 32)) for x in temp])
self.labels.extend([i] * len(temp))
print(" --> batch{} -{}set consisting of {} samples".format(batch_num, mode, len(self)))
def __setitem__(self, index, value):
self.imgs[index] = value[0]
self.labels[index] = value[1]
def __getitem__(self, index):
fn = self.imgs[index]
label = self.labels[index]
img = fn
if self.transform is not None:
img = self.transform(img)
return img, label
def __len__(self):
return len(self.imgs)
# ----------------------------------------------------------------------------------------------------------#
class SubDataset(Dataset):
def __init__(self, original_dataset, sub_labels, target_transform=None):
super().__init__()
self.dataset = original_dataset
self.sub_indeces = []
for index in range(len(self.dataset)):
if hasattr(original_dataset, "train_labels"):
if self.dataset.target_transform is None:
label = self.dataset.train_labels[index]
else:
label = self.dataset.target_transform(self.dataset.train_labels[index])
elif hasattr(self.dataset, "test_labels"):
if self.dataset.target_transform is None:
label = self.dataset.test_labels[index]
else:
label = self.dataset.target_transform(self.dataset.test_labels[index])
else:
label = self.dataset[index][1]
if label in sub_labels:
self.sub_indeces.append(index)
self.target_transform = target_transform
def __len__(self):
return len(self.sub_indeces)
def __getitem__(self, index):
sample = self.dataset[self.sub_indeces[index]]
if self.target_transform:
target = self.target_transform(sample[1])
sample = (sample[0], target)
return sample
class ExemplarDataset(Dataset):
def __init__(self, exemplar_sets, target_transform=None):
super().__init__()
self.exemplar_sets = exemplar_sets
self.target_transform = target_transform
def __len__(self):
total = 0
for class_id in range(len(self.exemplar_sets)):
total += len(self.exemplar_sets[class_id])
return total
def __getitem__(self, index):
total = 0
for class_id in range(len(self.exemplar_sets)):
exemplars_in_this_class = len(self.exemplar_sets[class_id])
if index < (total + exemplars_in_this_class):
class_id_to_return = class_id if self.target_transform is None else self.target_transform(class_id)
exemplar_id = index - total
break
else:
total += exemplars_in_this_class
image = torch.from_numpy(self.exemplar_sets[class_id][exemplar_id])
return (image, class_id_to_return)
def get_multitask_experiment(name, tasks, only_config=False, factor='clutter'):
classes_per_task = 0
config = {}
if name == 'OpenLORIS-Object':
tasks = 9
classes_per_task = 69
config = {'size': 224, 'channels': 3, 'classes': 69}
elif name == 'cifar':
tasks = 5
classes_per_task = 20
config = {'size': 32, 'channels': 3, 'classes': 20}
elif name == 'mnist':
tasks = 5
classes_per_task = 2
config = {'size': 32, 'channels': 3, 'classes': 2}
train_datasets = []
test_datasets = []
for i in range(tasks):
train_datasets.append(MyDataset(i, name=name, mode='train', own_transform=my_transform, factor=factor))
test_datasets.append(MyDataset(i, name=name, mode='test', own_transform=my_transform, factor=factor))
# Return tuple of train-, validation- and test-dataset, config-dictionary and number of classes per task
return config if only_config else ((train_datasets, test_datasets), config, classes_per_task)
'''
import pickle
with open('mnist.pk','wb') as f:
pickle.dump(get_multitask_experiment('mnist', 1),f)
'''