Releases: shenweichen/DeepCTR
v0.8.1
Change Log
Major Features and Improvements
- Improve the reproducibility of models
Bug Fixes and Other Changes
-
Fix
ValueError: The name "seq_length" is used 2 times in the model. All layer names should be unique.
when runningrun_dien.py
in tf-2.x #186 -
Fix
ImportError: cannot import name 'create_embedding_matrix
when running
from deepctr.inputs import create_embedding_matrix
#252 -
Fix
ValueError: The initial value's shape ((27, 4)) is not compatible with the explicitly supplied shape argument ((27, 1)).
when runningrun_classification_criteo.py
in tf-2.3.0 #259
v0.8.0
Change Log 中文版本更新说明
Major Features and Improvements
- Support
Tensorflow Estimator
for large scale data and distributed training. - Support different initializers for different embedding weights by settting
embeddings_initializer
ofSparseFeat
- Support using pretrained weights to initialize embedding weights and frozen embedding weights. example
- Add new model
FwFM
Bug Fixes and Other Changes
API changes
- The followings are moved from
deepctr.inputs
todeepctr.feature_column
- Class:
SparseFeat
,VarLenSparseFeat
,DenseFeat
- Function:
get_feature_names
,build_input_features
,get_linear_logit
,input_from_feature_columns
- Variable:
DEFAULT_GROUP_NAME
- Class:
combined_dnn_input
is moved fromdeepctr.inputs
todeepctr.layers.utils
SparseFeat
addembeddings_initializer
andtrainable
arguments。
v0.7.5
Change Log
Bug Fixes and Other Changes
- Fix numerical instability in
LayerNormalization
API changes
- Remove
embedding_size
parameter fromPNN
model
v0.7.4
Change Log
Major Features and Improvements
- Add FLEN Chinese Introducton FLEN: 一种时空高效的利用场信息缓解梯度耦合的大规模CTR预测模型
v0.7.3
Change Log
Bug Fixes and Other Changes
Fix the inconsistency of prediction results when the model is loaded with trained weights.
v0.7.2
Change Log
- fix bug in
get_varlen_pooling_list
- fix bug in
SequencePoolingLayer
whenmode='max'
- Add alias
ONN
for modelNFFM
v0.7.1
Change Log 中文版本更新说明
Major Features and Improvements
- Simplify VarLenSparseFeat,support setting weight_normalization. #163
Bug Fixes and Other Changes
- Fix problem of embedding size of
SparseFeat
inlinear_feature_columns
. #178
API changes
deepctr.layers.sequence.WeightedSequenceLayer
default value of weight_normalization
in WeightedSequenceLayer
is set to True
。
-
previous:
deepctr.layers.sequence.WeightedSequenceLayer(weight_normalization=False, supports_masking=False)
-
now:
deepctr.layers.sequence.WeightedSequenceLayer(weight_normalization=True, supports_masking=False)
deepctr.inputs.VarLenSparseFeat
Parameter list of VarLenSparseFeat
consists of a instance of SparseFeat
and parameters related to sequence.
-
previous:
VarLenSparseFeat(name, maxlen, vocabulary_size, embedding_dim=4, combiner="mean", use_hash=False, dtype="float32", length_name=None, weight_name=None, embedding_name=None, group_name=DEFAULT_GROUP_NAME)
-
now:
VarLenSparseFeat(sparsefeat, maxlen, combiner="mean", length_name=None, weight_name=None, weight_norm=True)
v0.7.0
Change Log
Major Features and Improvements
- Refactor feature columns.
- Different features can use different
embedding_dim
- group-wise interaction is available by setting
group_name
. - add linear part to some models
API changes
embedding_size
parameter of models is removed.Now we must setembedding_dim
(default 4) inSparseFeat
orVarLenSparseFeat
.
v0.6.3
Change Log
Major Features and Improvements
Add WeightedSequenceLayer
and support weighted sequence feature input.
Bug Fixes and Other Changes
fix bug of duplicated bias term in models.#150