-
Notifications
You must be signed in to change notification settings - Fork 5
/
app.py
317 lines (246 loc) · 11 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
from flask import Flask, render_template, request, jsonify
import sqlalchemy as sql
from sqlalchemy.orm import Session
from sqlalchemy import create_engine
import pymysql
import json
import pandas as pd
from flask import Response
import os
from surprise import dump
# Path to dump files and name
dumpfile_knn = os.path.join("./data/dump/dump_knn_dump_file")
beer_pickel_path = os.path.join("./data/dump/beer_final.pkl")
# Load dump files
predictions_knn, algo_knn = dump.load(dumpfile_knn)
beers_df = pd.read_pickle(beer_pickel_path)
beers_df["beer_brewery"] = beers_df["beer_brewery"].replace("/", "-", regex=True)
# Create the trainset from the knn_algorithm in order to get the inner_ids
trainset_knn = algo_knn.trainset
def get_beer_brewery(beer_raw_id):
beer_brewery = beers_df.loc[beers_df.beer_id == beer_raw_id, "beer_brewery"].values[0]
return beer_brewery
def get_beer_raw_id(beer_name):
beer_raw_id = beers_df.loc[beers_df.beer_brewery == beer_name, "beer_id"].values[0]
return beer_raw_id
def get_beer_style(beer_raw_id):
beer_style = beers_df.loc[beers_df.beer_id == beer_raw_id, "style"].values[0]
return beer_style
def get_beer_score_mean(beer_raw_id):
score_mean = beers_df.loc[beers_df.beer_id == beer_raw_id, "score"].values[0]
return score_mean
def get_beer_neighbors(beer_raw_id):
beer_inner_id = algo_knn.trainset.to_inner_iid(beer_raw_id)
beer_neighbors = algo_knn.get_neighbors(beer_inner_id, k=10)
beer_neighbors = (
algo_knn.trainset.to_raw_iid(inner_id) for inner_id in beer_neighbors
)
return beer_neighbors
def get_beer_recc_df(beer_raw_id):
beer_inner_id = algo_knn.trainset.to_inner_iid(beer_raw_id)
beer_neighbors = algo_knn.get_neighbors(beer_inner_id, k=10)
beer_neighbors = (
algo_knn.trainset.to_raw_iid(inner_id) for inner_id in beer_neighbors
)
beers_id_recc = []
beer_brewery_recc = []
beer_style_recc = []
beer_score_mean = []
for beer in beer_neighbors:
beers_id_recc.append(beer)
beer_brewery_recc.append(get_beer_brewery(beer))
beer_style_recc.append(get_beer_style(beer))
beer_score_mean.append(get_beer_score_mean(beer))
beer_reccomendations_df = pd.DataFrame(
list(zip(beers_id_recc, beer_brewery_recc, beer_style_recc, beer_score_mean)),
columns=["beer_id", "name", "style", "score_mean"],
)
return beer_reccomendations_df
################################################################
# Flask Setup and Database Connection #
################################################################
app = Flask(__name__)
SQLALCHEMY_DATABASE_URL = os.getenv("DB_CONN")
sql_engine = sql.create_engine(SQLALCHEMY_DATABASE_URL)
################################################################
# Flask Routes #
################################################################
@app.route("/")
def home():
return render_template("verification.html")
@app.route("/index.html")
def index():
return render_template("index.html")
@app.errorhandler(404)
def invalid_route(e):
return render_template("404.html")
# --------------------------------------------------------------#
# recommender routes #
# --------------------------------------------------------------#
@app.route("/educator.html")
def educator():
TABLENAME = "ba_beerstyles"
query = f"SELECT DISTINCT Category FROM {TABLENAME}"
df = pd.read_sql_query(query, sql_engine)
categories = df["Category"].tolist()
categories.append("Choose a Category")
return render_template("educator.html", categories=categories)
# populate beerstyle dropdown - * Needs work(Dynamic Dropdown) *
@app.route("/beerstyle_names")
def beer_style():
TABLENAME = "ba_beerstyles"
query = f"SELECT DISTINCT Style FROM {TABLENAME}"
df = pd.read_sql_query(query, sql_engine)
# return json of the dataframe
return Response(df.to_json(orient="records"), mimetype="application/json")
# populate beerstyle dropdown based upon Category input
@app.route("/beerstyle_filtered/<category>")
def beer_style_filtered(category):
TABLENAME = "ba_beerstyles"
query = f"SELECT Style FROM {TABLENAME} WHERE Category = '{category}'"
df = pd.read_sql_query(query, sql_engine)
df2 = pd.DataFrame({"Style": ["Select a Beer Style"]})
df = df2.append(df)
# return json of the dataframe
return Response(df.to_json(orient="records"), mimetype="application/json")
# selector for beerstyle for gaugechart
@app.route("/beerstyle/<beerstyle>")
def guagechart(beerstyle):
TABLENAME = "ba_beerstyles"
query = f"SELECT * FROM {TABLENAME} WHERE Style = '{beerstyle}'"
df = pd.read_sql_query(query, sql_engine)
# return json of the dataframe
return Response(df.to_json(orient="records"), mimetype="application/json")
# route to display top 5 beer recommendations
@app.route("/recommender/<beerstyle>")
def selector(beerstyle):
TABLENAME1 = "top_5_beers"
TABLENAME2 = "final_beers"
query = f"select {TABLENAME2}.*, {TABLENAME1}.avg_rating, {TABLENAME1}.review_count from {TABLENAME2} cross join {TABLENAME1} on {TABLENAME1}.beer_id = {TABLENAME2}.beer_id where {TABLENAME1}.beer_style = '{beerstyle}'"
df = pd.read_sql_query(query, sql_engine)
isempty = df.empty
if isempty == True:
df2 = pd.DataFrame(
{"beer_name": ["Sorry, we dont have a recommendation for that style"]}
)
df = df2.append(df)
# return json of the dataframe
return Response(df.to_json(orient="records"), mimetype="application/json")
# route to generate wordcloud for top beerstyles
@app.route("/category")
def top_beerstyles():
TABLENAME = "final_beers"
query = f"SELECT COUNT(beer_style) AS count, beer_style, category FROM {TABLENAME} GROUP BY beer_style, category"
df = pd.read_sql_query(query, sql_engine)
# return json of the dataframe
return Response(df.to_json(orient="records"), mimetype="application/json")
# route to add beerstyle image
@app.route("/beerstyles_links/<beerstyle>")
def beer_style_links(beerstyle):
TABLENAME = "beer_styles_links"
query = f"SELECT * FROM {TABLENAME} WHERE beer_style = '{beerstyle}'"
df = pd.read_sql_query(query, sql_engine)
# return json of the dataframe
return Response(df.to_json(orient="records"), mimetype="application/json")
# --------------------------------------------------------------#
# dashboard routes #
# --------------------------------------------------------------#
@app.route("/dashboard.html")
def dashboard():
return render_template("dashboard.html")
@app.route("/state_data")
def state_data():
TABLENAME = "us_state_data"
query = f"SELECT * FROM {TABLENAME}"
df = pd.read_sql_query(query, sql_engine)
# return json of the dataframe
return Response(df.to_json(orient="records"), mimetype="application/json")
@app.route("/style_rank")
def style_rank():
TABLENAME = "beer_style_pop"
query = f"SELECT beer_style, review_count FROM {TABLENAME} ORDER BY review_count DESC LIMIT 10"
df = pd.read_sql_query(query, sql_engine)
# return json of the dataframe
return Response(df.to_json(orient="records"), mimetype="application/json")
@app.route("/category_data")
def category_data():
TABLENAME = "ba_beerstyles"
query = f"SELECT * FROM {TABLENAME}"
df = pd.read_sql_query(query, sql_engine)
# return json of the dataframe
return Response(df.to_json(orient="records"), mimetype="application/json")
# state selector
@app.route("/statedata/<state>")
def state_stat(state):
TABLENAME = "us_state_data"
query = f"SELECT * FROM {TABLENAME} WHERE state = '{state}'"
df = pd.read_sql_query(query, sql_engine)
# return json of the dataframe
return Response(df.to_json(orient="records"), mimetype="application/json")
# --------------------------------------------------------------#
# breweries routes #
# --------------------------------------------------------------#
@app.route("/breweries.html")
def breweries():
return render_template("breweries.html")
# --------------------------------------------------------------#
# Recommender model routes #
# --------------------------------------------------------------#
# Route returns the beer;brewery to populate the dropdown
@app.route("/knnrecommender.html")
def recommender_selector():
beers = beers_df["beer_brewery"].tolist()
beers.sort()
beers.append("Choose a Beer")
return render_template("knnrecommender.html", beers=beers)
# Beer_name is beer;brewery format to match the search route
@app.route("/neighbors/<beer_name>")
def nearest_neighbors(beer_name):
beer_raw_id = get_beer_raw_id(beer_name)
df = get_beer_recc_df(beer_raw_id)
df["score_mean"] = df["score_mean"].apply(lambda x: round(x, 2))
# return json of the dataframe
return Response(df.to_json(orient="records"), mimetype="application/json")
# Beer_name is beer;brewery format
@app.route("/predict", methods=["POST"])
def predict():
data_dict = request.get_json()
username = data_dict["username"]
beer_name = data_dict["beer"]
beer_raw_id = get_beer_raw_id(beer_name)
predict = algo_knn.predict(username, beer_raw_id)
df_predict = pd.DataFrame(
[predict], columns=["username", "beer_id", "r_ui", "prediction", "details"]
)
return Response(df_predict.to_json(orient="records"), mimetype="application/json")
# Route takes the username and returns the top10 and bottom 10 predicted ratings
@app.route("/userpredict/<username>")
def userpredict(username):
beers = beers_df["beer_brewery"].tolist()
predict_df = pd.DataFrame([])
for beer in beers:
beer_raw_id = get_beer_raw_id(beer)
predict = algo_knn.predict(username, beer_raw_id)
predict_df = predict_df.append(
pd.DataFrame(
[predict],
columns=["username", "beer_id", "r_ui", "prediction", "details"],
)
)
picks = pd.merge(predict_df, beers_df, on="beer_id")
picks = picks.round({"prediction": 2, "score": 2})
top_10picks = picks.sort_values(by=["prediction"], ascending=False)[:10]
top_10picks["pick"] = "Top10"
bot_10picks = picks.sort_values(by=["prediction"], ascending=False)[-10:]
bot_10picks["pick"] = "Bottom10"
user_picks = pd.concat([top_10picks, bot_10picks])
return Response(user_picks.to_json(orient="records"), mimetype="application/json")
# Route will call /userpredict/<username> to render predictions for user with table
@app.route("/userpredict.html")
def predict_user_rating():
return render_template("userpredict.html")
################################################################
# Main #
################################################################
if __name__ == "__main__":
app.run(debug=True,host='0.0.0.0',port=int(os.environ.get('PORT', 8080)))