Skip to content

Latest commit

 

History

History
88 lines (73 loc) · 5.88 KB

benchmarks.md

File metadata and controls

88 lines (73 loc) · 5.88 KB

Benchmarks

Config

board = NVIDIA Tesla V100 16GB (AWS: p3.2xlarge)
batch-size = 1
eval = val2017 (COCO)
sample = 1920x1080 video

NOTE: Used maintain-aspect-ratio=1 in config_infer file for Darknet (with letter_box=1) and PyTorch models.

NMS config

  • Eval
nms-iou-threshold = 0.6 (Darknet) / 0.65 (YOLOv5, YOLOv6, YOLOv7, YOLOR and YOLOX) / 0.7 (Paddle, YOLO-NAS, DAMO-YOLO, YOLOv8 and YOLOv7-u6)
pre-cluster-threshold = 0.001
topk = 300
  • Test
nms-iou-threshold = 0.45
pre-cluster-threshold = 0.25
topk = 300

Results

NOTE: * = PyTorch.

NOTE: ** = The YOLOv4 is trained with the trainvalno5k set, so the mAP is high on val2017 test.

NOTE: star = DAMO-YOLO model trained with distillation.

NOTE: The V100 GPU decoder max out at 625-635 FPS on DeepStream even using lighter models.

NOTE: The GPU bbox parser is a bit slower than CPU bbox parser on V100 GPU tests.

DeepStream Precision Resolution IoU=0.5:0.95 IoU=0.5 IoU=0.75 FPS
(without display)
YOLO-NAS L FP16 640 0.484 0.658 0.532 235.27
YOLO-NAS M FP16 640 0.480 0.651 0.524 287.39
YOLO-NAS S FP16 640 0.442 0.614 0.485 478.52
PP-YOLOE+_x FP16 640 0.528 0.705 0.579 121.17
PP-YOLOE+_l FP16 640 0.511 0.686 0.557 191.82
PP-YOLOE+_m FP16 640 0.483 0.658 0.528 264.39
PP-YOLOE+_s FP16 640 0.424 0.594 0.464 476.13
PP-YOLOE-s (400) FP16 640 0.423 0.589 0.463 461.23
DAMO-YOLO-L star FP16 640 0.502 0.674 0.551 176.93
DAMO-YOLO-M star FP16 640 0.485 0.656 0.530 242.24
DAMO-YOLO-S star FP16 640 0.460 0.631 0.502 385.09
DAMO-YOLO-S FP16 640 0.445 0.611 0.486 378.68
DAMO-YOLO-T star FP16 640 0.419 0.586 0.455 492.24
DAMO-YOLO-Nl FP16 416 0.392 0.559 0.423 483.73
DAMO-YOLO-Nm FP16 416 0.371 0.532 0.402 555.94
DAMO-YOLO-Ns FP16 416 0.312 0.460 0.335 627.67
YOLOX-x FP16 640 0.447 0.616 0.483 125.40
YOLOX-l FP16 640 0.430 0.598 0.466 193.10
YOLOX-m FP16 640 0.397 0.566 0.431 298.61
YOLOX-s FP16 640 0.335 0.502 0.365 522.05
YOLOX-s legacy FP16 640 0.375 0.569 0.407 518.52
YOLOX-Darknet FP16 640 0.414 0.595 0.453 212.88
YOLOX-Tiny FP16 640 0.274 0.427 0.292 633.95
YOLOX-Nano FP16 640 0.212 0.342 0.222 633.04
YOLOv8x FP16 640 0.499 0.669 0.545 130.49
YOLOv8l FP16 640 0.491 0.660 0.535 180.75
YOLOv8m FP16 640 0.468 0.637 0.510 278.08
YOLOv8s FP16 640 0.415 0.578 0.453 493.45
YOLOv8n FP16 640 0.343 0.492 0.373 627.43
YOLOv7-u6 FP16 640 0.484 0.652 0.530 193.54
YOLOv7x* FP16 640 0.496 0.679 0.536 155.07
YOLOv7* FP16 640 0.476 0.660 0.518 226.01
YOLOv7-Tiny Leaky* FP16 640 0.345 0.516 0.372 626.23
YOLOv7-Tiny Leaky* FP16 416 0.328 0.493 0.349 633.90
YOLOv6-L 4.0 FP16 640 0.490 0.671 0.535 178.41
YOLOv6-M 4.0 FP16 640 0.460 0.635 0.502 293.39
YOLOv6-S 4.0 FP16 640 0.416 0.585 0.453 513.90
YOLOv6-N 4.0 FP16 640 0.349 0.503 0.378 633.37
YOLOv5x 7.0 FP16 640 0.471 0.652 0.513 149.93
YOLOv5l 7.0 FP16 640 0.455 0.637 0.497 235.55
YOLOv5m 7.0 FP16 640 0.421 0.604 0.459 351.69
YOLOv5s 7.0 FP16 640 0.344 0.529 0.372 618.13
YOLOv5n 7.0 FP16 640 0.247 0.414 0.257 629.66