board = NVIDIA Tesla V100 16GB (AWS: p3.2xlarge)
batch-size = 1
eval = val2017 (COCO)
sample = 1920x1080 video
NOTE: Used maintain-aspect-ratio=1 in config_infer file for Darknet (with letter_box=1) and PyTorch models.
- Eval
nms-iou-threshold = 0.6 (Darknet) / 0.65 (YOLOv5, YOLOv6, YOLOv7, YOLOR and YOLOX) / 0.7 (Paddle, YOLO-NAS, DAMO-YOLO, YOLOv8 and YOLOv7-u6)
pre-cluster-threshold = 0.001
topk = 300
- Test
nms-iou-threshold = 0.45
pre-cluster-threshold = 0.25
topk = 300
NOTE: * = PyTorch.
NOTE: ** = The YOLOv4 is trained with the trainvalno5k set, so the mAP is high on val2017 test.
NOTE: star = DAMO-YOLO model trained with distillation.
NOTE: The V100 GPU decoder max out at 625-635 FPS on DeepStream even using lighter models.
NOTE: The GPU bbox parser is a bit slower than CPU bbox parser on V100 GPU tests.
DeepStream | Precision | Resolution | IoU=0.5:0.95 | IoU=0.5 | IoU=0.75 | FPS (without display) |
---|---|---|---|---|---|---|
YOLO-NAS L | FP16 | 640 | 0.484 | 0.658 | 0.532 | 235.27 |
YOLO-NAS M | FP16 | 640 | 0.480 | 0.651 | 0.524 | 287.39 |
YOLO-NAS S | FP16 | 640 | 0.442 | 0.614 | 0.485 | 478.52 |
PP-YOLOE+_x | FP16 | 640 | 0.528 | 0.705 | 0.579 | 121.17 |
PP-YOLOE+_l | FP16 | 640 | 0.511 | 0.686 | 0.557 | 191.82 |
PP-YOLOE+_m | FP16 | 640 | 0.483 | 0.658 | 0.528 | 264.39 |
PP-YOLOE+_s | FP16 | 640 | 0.424 | 0.594 | 0.464 | 476.13 |
PP-YOLOE-s (400) | FP16 | 640 | 0.423 | 0.589 | 0.463 | 461.23 |
DAMO-YOLO-L star | FP16 | 640 | 0.502 | 0.674 | 0.551 | 176.93 |
DAMO-YOLO-M star | FP16 | 640 | 0.485 | 0.656 | 0.530 | 242.24 |
DAMO-YOLO-S star | FP16 | 640 | 0.460 | 0.631 | 0.502 | 385.09 |
DAMO-YOLO-S | FP16 | 640 | 0.445 | 0.611 | 0.486 | 378.68 |
DAMO-YOLO-T star | FP16 | 640 | 0.419 | 0.586 | 0.455 | 492.24 |
DAMO-YOLO-Nl | FP16 | 416 | 0.392 | 0.559 | 0.423 | 483.73 |
DAMO-YOLO-Nm | FP16 | 416 | 0.371 | 0.532 | 0.402 | 555.94 |
DAMO-YOLO-Ns | FP16 | 416 | 0.312 | 0.460 | 0.335 | 627.67 |
YOLOX-x | FP16 | 640 | 0.447 | 0.616 | 0.483 | 125.40 |
YOLOX-l | FP16 | 640 | 0.430 | 0.598 | 0.466 | 193.10 |
YOLOX-m | FP16 | 640 | 0.397 | 0.566 | 0.431 | 298.61 |
YOLOX-s | FP16 | 640 | 0.335 | 0.502 | 0.365 | 522.05 |
YOLOX-s legacy | FP16 | 640 | 0.375 | 0.569 | 0.407 | 518.52 |
YOLOX-Darknet | FP16 | 640 | 0.414 | 0.595 | 0.453 | 212.88 |
YOLOX-Tiny | FP16 | 640 | 0.274 | 0.427 | 0.292 | 633.95 |
YOLOX-Nano | FP16 | 640 | 0.212 | 0.342 | 0.222 | 633.04 |
YOLOv8x | FP16 | 640 | 0.499 | 0.669 | 0.545 | 130.49 |
YOLOv8l | FP16 | 640 | 0.491 | 0.660 | 0.535 | 180.75 |
YOLOv8m | FP16 | 640 | 0.468 | 0.637 | 0.510 | 278.08 |
YOLOv8s | FP16 | 640 | 0.415 | 0.578 | 0.453 | 493.45 |
YOLOv8n | FP16 | 640 | 0.343 | 0.492 | 0.373 | 627.43 |
YOLOv7-u6 | FP16 | 640 | 0.484 | 0.652 | 0.530 | 193.54 |
YOLOv7x* | FP16 | 640 | 0.496 | 0.679 | 0.536 | 155.07 |
YOLOv7* | FP16 | 640 | 0.476 | 0.660 | 0.518 | 226.01 |
YOLOv7-Tiny Leaky* | FP16 | 640 | 0.345 | 0.516 | 0.372 | 626.23 |
YOLOv7-Tiny Leaky* | FP16 | 416 | 0.328 | 0.493 | 0.349 | 633.90 |
YOLOv6-L 4.0 | FP16 | 640 | 0.490 | 0.671 | 0.535 | 178.41 |
YOLOv6-M 4.0 | FP16 | 640 | 0.460 | 0.635 | 0.502 | 293.39 |
YOLOv6-S 4.0 | FP16 | 640 | 0.416 | 0.585 | 0.453 | 513.90 |
YOLOv6-N 4.0 | FP16 | 640 | 0.349 | 0.503 | 0.378 | 633.37 |
YOLOv5x 7.0 | FP16 | 640 | 0.471 | 0.652 | 0.513 | 149.93 |
YOLOv5l 7.0 | FP16 | 640 | 0.455 | 0.637 | 0.497 | 235.55 |
YOLOv5m 7.0 | FP16 | 640 | 0.421 | 0.604 | 0.459 | 351.69 |
YOLOv5s 7.0 | FP16 | 640 | 0.344 | 0.529 | 0.372 | 618.13 |
YOLOv5n 7.0 | FP16 | 640 | 0.247 | 0.414 | 0.257 | 629.66 |