forked from cui-xiaoang96/2019-China-GMCM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIDEC.py
201 lines (124 loc) · 5.42 KB
/
IDEC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 23 15:03:05 2019
@author: MSI
"""
# basic moudle
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import math as mt
import random
import time
# seaborn moudle
import seaborn as sns
# os moudle
import os
# sklearn moudle
from sklearn.metrics import r2_score
from sklearn import preprocessing
# keras moudle
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.losses import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as keras
from keras.layers import BatchNormalization
from keras.layers.advanced_activations import LeakyReLU
from keras import backend as K
# IDEC网络模型
def IDEC_1D(input_size = (200, 1), verbose = 0, activation_funcation = 'relu', conv_size = 3) :
inputs = Input(input_size)
print(inputs.shape)
# 第一层
conv1 = Conv1D(16, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(inputs)
print(conv1.shape)
conv1 = Conv1D(16, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(conv1)
conv1 = BatchNormalization()(conv1)
pool1 = MaxPooling1D(pool_size=(2))(conv1)
print(pool1.shape)
# 第二层
conv2 = Conv1D(32, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(pool1)
conv2 = Conv1D(32, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(conv2)
drop2 = BatchNormalization()(conv2)
pool2 = MaxPooling1D(pool_size=(2))(drop2)
print(pool2.shape)
# 第三层
conv3 = Conv1D(16, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(UpSampling1D(size = 2)(pool2))
conv3 = Conv1D(16, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(conv3)
conv3 = Conv1D(16, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(conv3)
conv3 = BatchNormalization()(conv3)
print(conv3.shape)
# 第四层
dens4 = Flatten()(conv3)
dens4 = Dense(units=100, activation='relu')(dens4)
dens4 = Dropout(0.2)(dens4)
print(dens4.shape)
# 第一层输出
outp1 = Dense(units=10, activation='relu', name='output')(dens4)
print(outp1.shape)
# 第五层
dens5 = Dense(units=100, activation='relu')(outp1)
print(dens5.shape)
dens5 = Reshape((100, 1))(dens5)
print(dens5.shape)
# 第六层
conv6 = Conv1D(16, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(dens5)
conv6 = Conv1D(16, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(conv6)
conv6 = BatchNormalization()(conv6)
conv6 = MaxPooling1D(pool_size=(2))(conv6)
print(conv6.shape)
# 第七层
conv7 = Conv1D(32, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(conv6)
conv7 = Conv1D(32, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(conv7)
conv7 = BatchNormalization()(conv7)
conv7 = MaxPooling1D(pool_size=(2))(conv7)
print(conv7.shape)
# 第七层
conv8 = Conv1D(16, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(UpSampling1D(size = 2)(conv7))
conv8 = Conv1D(16, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(conv8)
conv8 = Conv1D(16, conv_size, padding='same', kernel_initializer='he_normal', activation = activation_funcation)(conv8)
conv8 = BatchNormalization()(conv8)
print(conv8.shape)
# 第二层输出
outp2 = Flatten()(conv8)
outp2 = Dense(units=128, activation='relu')(outp2)
outp2 = Dropout(0.2)(outp2)
outp2 = Dense(units=input_size[0], activation='relu')(outp2)
print(outp2.shape)
model = Model(input = inputs, output = outp2)
model.compile(optimizer = Adam(lr = 1e-4), loss='mse')
return model
# 建立模型
model = IDEC_1D(input_size=(600, 1), verbose=1, activation_funcation = 'relu', conv_size = 3)
# 加载数据
data1 = np.load('./data/sport_data/data1.npy')
data2 = np.load('./data/sport_data/data2.npy')
data3 = np.load('./data/sport_data/data3.npy')
# 整理数据
data11 = np.zeros(data1.shape)
data22 = np.zeros(data2.shape)
data33 = np.zeros(data3.shape)
for i in range(data1.shape[0]):
data11[i, :] = data1[i, :][::-1]
for i in range(data2.shape[0]):
data22[i, :] = data2[i, :][::-1]
for i in range(data3.shape[0]):
data33[i, :] = data3[i, :][::-1]
xx = np.vstack((data1, data2, data3))
yy = np.vstack((data11, data22, data33))
x = np.zeros([xx.shape[0], xx.shape[1], 1])
for i in range(x.shape[0]):
x[i, :, 0] = xx[i, :]
y = yy
# 模型训练
history = model.fit(x, y, epochs=1000, shuffle=True, verbose=1)
# 输出属性
prediction = model.predict(x)
output = Model(inputs=model.input, outputs=model.get_layer('output').output)
output_data = output.predict(x)
plt.figure(1)
plt.plot(y[0, :])
plt.plot(prediction[0, :])