-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgg.py
171 lines (136 loc) · 5.29 KB
/
gg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""
All credit for rstyle, rhist, rbox goes to [messymind.net][1].
(With some additions from the comments section.)
Additional credit (husl_gen, rbar) goes to [Rob Story][2].
[1]: http://messymind.net/2012/07/making-matplotlib-look-like-ggplot/
[2]: http://nbviewer.ipython.org/urls/raw.github.com/wrobstory/climatic/master/examples/ggplot_styling_for_matplotlib.ipynb
"""
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import husl
import pylab
import mpltools.style
mpltools.style.use('ggplot')
matplotlib.rcParams['axes.color_cycle'] = [
"#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b",
"#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
# from http://mbostock.github.io/protovis/docs/color.html
def husl_gen():
"""
Generate random set of HUSL colors, one dark, one light.
"""
hue = np.random.randint(0, 360)
saturation, lightness = np.random.randint(0, 100, 2)
husl_dark = husl.husl_to_hex(hue, saturation, lightness / 3)
husl_light = husl.husl_to_hex(hue, saturation, lightness)
return str(husl_dark), str(husl_light)
def rstyle(ax, xlog=False, ylog=False):
"""
Styles x,y axes to appear like ggplot2.
Must be called after all plot and axis manipulation operations have been
carried out, as it needs to know the final tick spacing.
"""
#Set the style of the major and minor grid lines, filled blocks
ax.grid(True, 'major', color='w', linestyle='-', linewidth=1.4)
ax.grid(True, 'minor', color='0.99', linestyle='-', linewidth=0.7)
ax.patch.set_facecolor('#e5e5e5')
ax.set_axisbelow(True)
#Set minor tick spacing to 1/2 of the major ticks
if not xlog:
ax.xaxis.set_minor_locator((pylab.MultipleLocator((
plt.xticks()[0][1] - plt.xticks()[0][0]) / 2.0)))
if not ylog:
ax.yaxis.set_minor_locator((pylab.MultipleLocator((
plt.yticks()[0][1] - plt.yticks()[0][0]) / 2.0)))
#Remove axis border
for child in ax.get_children():
if isinstance(child, matplotlib.spines.Spine):
child.set_alpha(0)
#Restyle the tick lines
for line in ax.get_xticklines() + ax.get_yticklines():
line.set_markersize(5)
line.set_color("gray")
line.set_markeredgewidth(1.4)
#Remove the minor tick lines
for line in (ax.xaxis.get_ticklines(minor=True) +
ax.yaxis.get_ticklines(minor=True)):
line.set_markersize(0)
#Only show bottom left ticks, pointing out of axis
plt.rcParams['xtick.direction'] = 'out'
plt.rcParams['ytick.direction'] = 'out'
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
def rbar(ax, left, height, **kwargs):
"""
Create a bar plot with default style parameters to look like ggplot2.
kwargs can be passed to changed other parameters
"""
defaults = {'facecolor': '0.15',
'edgecolor': '0.28',
'linewidth': 1,
'width': 1}
for x, y in defaults.iteritems():
kwargs.setdefault(x, y)
return ax.bar(left, height, **kwargs)
def rfill(ax, x_range, dist, **kwargs):
"""
Create a density plot to resemble ggplot2.
kwargs can be passed to change other parameters.
"""
defaults = {'linewidth': 2.0,
'alpha': 0.4}
for x, y in defaults.iteritems():
kwargs.setdefault(x, y)
# Make edge color a darker shade of facecolor.
patches = ax.fill(x_range, dist, **kwargs)
for patch in patches:
fc = patch.get_facecolor()
patch.set_edgecolor(tuple(x * 0.5 for x in fc[:3]) + (fc[3],))
return ax
def rhist(ax, data, **kwargs):
"""
Create a hist plot with default style parameters to look like ggplot2.
kwargs can be passed to changed other parameters.
"""
defaults = {'facecolor': '0.3',
'edgecolor': '0.36',
'linewidth': 1,
'rwidth': 1}
for x, y in defaults.iteritems():
kwargs.setdefault(x, y)
return ax.hist(data, **kwargs)
def rbox(ax, data, **keywords):
"""
Create a ggplot2 style boxplot, is eqivalent to calling ax.boxplot with the following additions:
Keyword arguments:
colors -- array-like collection of colours for box fills
names -- array-like collection of box names which are passed on as tick labels
"""
hasColors = 'colors' in keywords
if hasColors:
colors = keywords['colors']
keywords.pop('colors')
if 'names' in keywords:
ax.tickNames = plt.setp(ax, xticklabels=keywords['names'])
keywords.pop('names')
bp = ax.boxplot(data, **keywords)
pylab.setp(bp['boxes'], color='black')
pylab.setp(bp['whiskers'], color='black', linestyle='solid')
pylab.setp(bp['fliers'], color='black', alpha=.9, marker='o', markersize=3)
pylab.setp(bp['medians'], color='black')
numBoxes = len(data)
for i in range(numBoxes):
box = bp['boxes'][i]
boxX = []
boxY = []
for j in range(5):
boxX.append(box.get_xdata()[j])
boxY.append(box.get_ydata()[j])
boxCoords = zip(boxX,boxY)
if hasColors:
boxPolygon = pylab.Polygon(boxCoords, facecolor=colors[i % len(colors)])
else:
boxPolygon = pylab.Polygon(boxCoords, facecolor='0.95')
ax.add_patch(boxPolygon)
return bp