-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate_model.py
83 lines (69 loc) · 3.42 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Written by Seonwoo Min, Seoul National University ([email protected])
import os
import sys
import argparse
os.environ['MKL_THREADING_LAYER'] = 'GNU'
import torch
torch.multiprocessing.set_sharing_strategy('file_system')
import src.config as config
from src.data import get_dataset_from_configs
from src.model.model_utils import get_model
from src.train import Trainer
from src.utils import Print, set_seeds, set_output, check_args
parser = argparse.ArgumentParser('Evaluate a microRNA Target Prediction Model')
parser.add_argument('--data-config', help='path for data configuration file')
parser.add_argument('--model-config', help='path for model configuration file')
parser.add_argument('--run-config', help='path for run configuration file')
parser.add_argument('--checkpoint', help='path for checkpoint to resume')
parser.add_argument('--output-path', help='path for outputs (default: stdout and without saving)')
def main():
args = vars(parser.parse_args())
check_args(args)
set_seeds(2020)
data_cfg = config.DataConfig(args["data_config"])
model_cfg = config.ModelConfig(args["model_config"])
run_cfg = config.RunConfig(args["run_config"], eval=True)
output, save_prefix = set_output(args, "evaluate_model_log")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config.print_configs(args, [data_cfg, model_cfg, run_cfg], device, output)
torch.zeros((1)).to(device)
## Loading datasets
start = Print(" ".join(['start loading datasets']), output)
dataset_idxs, datasets, iterators = data_cfg.path.keys(), [], []
for idx in dataset_idxs:
dataset = get_dataset_from_configs(data_cfg, idx)
iterator = torch.utils.data.DataLoader(dataset, run_cfg.batch_size, shuffle=False, pin_memory=True, num_workers=4)
datasets.append(dataset)
iterators.append(iterator)
end = Print(" ".join(['loaded', str(len(dataset)), idx, 'samples']), output)
Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)
## initialize a model
start = Print('start initializing a model', output)
model, params = get_model(model_cfg, data_cfg.with_esa)
end = Print('end initializing a model', output)
Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)
## setup trainer configurations
start = Print('start setting trainer configurations', output)
trainer = Trainer(model)
trainer.load_model(args["checkpoint"], output)
trainer.set_device(device)
end = Print('end setting trainer configurations', output)
Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)
## evaluate a model
start = Print('start evaluating a model', output)
### validation
for idx, dataset, iterator in zip(dataset_idxs, datasets, iterators):
Print(" ".join(['processing', idx]), output)
### validation
for B, batch in enumerate(iterator):
trainer.evaluate(batch, device)
if B % 5 == 0: print('# {} {:.1%}'.format(idx, B / len(iterator)), end='\r', file=sys.stderr)
print(' ' * 150, end='\r', file=sys.stderr)
### save outputs
trainer.aggregate(dataset.set_labels)
trainer.save_outputs(idx, save_prefix)
end = Print('end evaluating a model', output)
Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)
if not output == sys.stdout: output.close()
if __name__ == '__main__':
main()