-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevaluate_model.py
69 lines (58 loc) · 3.18 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Written by Seonwoo Min, LG AI Research ([email protected])
import os
import sys
import argparse
os.environ['MKL_THREADING_LAYER'] = 'GNU'
import torch
from src.config import GVRT_Config, print_configs
from src.data import get_datasets_and_iterators
from src.algorithms import get_algorithm_class
from src.train import Trainer
from src.utils import Print, set_seeds, set_output
parser = argparse.ArgumentParser('Evaluate a Domain Generalization Model for the CUB-DG dataset')
parser.add_argument('--algorithm', help='Domain generalization algorithm')
parser.add_argument('--ste', default=False, action='store_true', help='GVRT with STE')
parser.add_argument('--test-env', type=int, help='test environment (used for multi-source DG)')
parser.add_argument('--seed', type=int, default=0, help='random seed (default: 0)')
parser.add_argument('--checkpoint', help='path for checkpoint to evaluate')
parser.add_argument('--output-path', help='path for outputs (default: stdout and without saving)')
def main():
args = vars(parser.parse_args())
gvrt_flag, gvrt_config = args["algorithm"] == "GVRT", GVRT_Config(args["ste"])
env_flag = args["test_env"]
output, save_prefix = set_output(args, "evaluate_model_log")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print_configs(args, device, output)
set_seeds(args["algorithm"], env_flag, args["seed"])
## Loading datasets
start = Print(" ".join(['start loading datasets']), output)
datasets, iterators_train, iterators_eval, eval_names = get_datasets_and_iterators(env_flag, gvrt_flag, eval_flag=True)
end = Print('end loading datasets', output)
Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)
## setup trainer configurations
start = Print('start setting trainer configurations', output)
algorithm_class = get_algorithm_class(args["algorithm"])
if gvrt_flag:
model = algorithm_class(datasets[0].num_classes, datasets[0].vocab, gvrt_config)
else:
model = algorithm_class(datasets[0].num_classes)
trainer = Trainer(model, device)
trainer.load_model(args["checkpoint"], output)
end = Print('end setting trainer configurations', output)
Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)
## evaluate a model
start = Print('start evaluating a model', output)
trainer.headline("test", model.loss_names, eval_names, output)
for iterator_eval, eval_name in zip(iterators_eval, eval_names):
for B, minibatch in enumerate(iterator_eval):
trainer.evaluate(minibatch, eval_name, save_flag=True)
if B % 5 == 0: print('# {} {:.1%}'.format(eval_name, B / len(iterator_eval)), end='\r', file=sys.stderr)
print(' ' * 50, end='\r', file=sys.stderr)
checkpoint_idx = os.path.splitext(os.path.basename(args["checkpoint"]))[0]
trainer.save_result(save_prefix, checkpoint_idx, datasets[0].data_path)
trainer.log("Accuracy", output, save_prefix, checkpoint_idx)
end = Print('end evaluating a model', output)
Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)
if not output == sys.stdout: output.close()
if __name__ == '__main__':
main()