-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathribesl.f
446 lines (442 loc) · 19.5 KB
/
ribesl.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
module rji
!! https://netlib.org/specfun/ribesl
implicit none
contains
SUBROUTINE RIBESL(X,ALPHA,NB,IZE,B,NCALC)
C-------------------------------------------------------------------
C
C This routine calculates Bessel functions I SUB(N+ALPHA) (X)
C for non-negative argument X, and non-negative order N+ALPHA,
C with or without exponential scaling.
C
C
C Explanation of variables in the calling sequence
C
C X - Working precision non-negative real argument for which
C I's or exponentially scaled I's (I*EXP(-X))
C are to be calculated. If I's are to be calculated,
C X must be less than EXPARG (see below).
C ALPHA - Working precision fractional part of order for which
C I's or exponentially scaled I's (I*EXP(-X)) are
C to be calculated. 0 .LE. ALPHA .LT. 1.0.
C NB - Integer number of functions to be calculated, NB .GT. 0.
C The first function calculated is of order ALPHA, and the
C last is of order (NB - 1 + ALPHA).
C IZE - Integer type. IZE = 1 if unscaled I's are to calculated,
C and 2 if exponentially scaled I's are to be calculated.
C B - Working precision output vector of length NB. If the routine
C terminates normally (NCALC=NB), the vector B contains the
C functions I(ALPHA,X) through I(NB-1+ALPHA,X), or the
C corresponding exponentially scaled functions.
C NCALC - Integer output variable indicating possible errors.
C Before using the vector B, the user should check that
C NCALC=NB, i.e., all orders have been calculated to
C the desired accuracy. See error returns below.
C
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C beta = Radix for the floating-point system
C minexp = Smallest representable power of beta
C maxexp = Smallest power of beta that overflows
C it = Number of bits in the mantissa of a working precision
C variable
C NSIG = Decimal significance desired. Should be set to
C INT(LOG10(2)*it+1). Setting NSIG lower will result
C in decreased accuracy while setting NSIG higher will
C increase CPU time without increasing accuracy. The
C truncation error is limited to a relative error of
C T=.5*10**(-NSIG).
C ENTEN = 10.0 ** K, where K is the largest integer such that
C ENTEN is machine-representable in working precision
C ENSIG = 10.0 ** NSIG
C RTNSIG = 10.0 ** (-K) for the smallest integer K such that
C K .GE. NSIG/4
C ENMTEN = Smallest ABS(X) such that X/4 does not underflow
C XLARGE = Upper limit on the magnitude of X when IZE=2. Bear
C in mind that if ABS(X)=N, then at least N iterations
C of the backward recursion will be executed. The value
C of 10.0 ** 4 is used on every machine.
C EXPARG = Largest working precision argument that the library
C EXP routine can handle and upper limit on the
C magnitude of X when IZE=1; approximately
C LOG(beta**maxexp)
C
C
C Approximate values for some important machines are:
C
C beta minexp maxexp it
C
C CRAY-1 (S.P.) 2 -8193 8191 48
C Cyber 180/855
C under NOS (S.P.) 2 -975 1070 48
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 2 -126 128 24
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 2 -1022 1024 53
C IBM 3033 (D.P.) 16 -65 63 14
C VAX (S.P.) 2 -128 127 24
C VAX D-Format (D.P.) 2 -128 127 56
C VAX G-Format (D.P.) 2 -1024 1023 53
C
C
C NSIG ENTEN ENSIG RTNSIG
C
C CRAY-1 (S.P.) 15 1.0E+2465 1.0E+15 1.0E-4
C Cyber 180/855
C under NOS (S.P.) 15 1.0E+322 1.0E+15 1.0E-4
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 8 1.0E+38 1.0E+8 1.0E-2
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 16 1.0D+308 1.0D+16 1.0D-4
C IBM 3033 (D.P.) 5 1.0D+75 1.0D+5 1.0D-2
C VAX (S.P.) 8 1.0E+38 1.0E+8 1.0E-2
C VAX D-Format (D.P.) 17 1.0D+38 1.0D+17 1.0D-5
C VAX G-Format (D.P.) 16 1.0D+307 1.0D+16 1.0D-4
C
C
C ENMTEN XLARGE EXPARG
C
C CRAY-1 (S.P.) 1.84E-2466 1.0E+4 5677
C Cyber 180/855
C under NOS (S.P.) 1.25E-293 1.0E+4 741
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 4.70E-38 1.0E+4 88
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 8.90D-308 1.0D+4 709
C IBM 3033 (D.P.) 2.16D-78 1.0D+4 174
C VAX (S.P.) 1.17E-38 1.0E+4 88
C VAX D-Format (D.P.) 1.17D-38 1.0D+4 88
C VAX G-Format (D.P.) 2.22D-308 1.0D+4 709
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C In case of an error, NCALC .NE. NB, and not all I's are
C calculated to the desired accuracy.
C
C NCALC .LT. 0: An argument is out of range. For example,
C NB .LE. 0, IZE is not 1 or 2, or IZE=1 and ABS(X) .GE. EXPARG.
C In this case, the B-vector is not calculated, and NCALC is
C set to MIN0(NB,0)-1 so that NCALC .NE. NB.
C
C NB .GT. NCALC .GT. 0: Not all requested function values could
C be calculated accurately. This usually occurs because NB is
C much larger than ABS(X). In this case, B(N) is calculated
C to the desired accuracy for N .LE. NCALC, but precision
C is lost for NCALC .LT. N .LE. NB. If B(N) does not vanish
C for N .GT. NCALC (because it is too small to be represented),
C and B(N)/B(NCALC) = 10**(-K), then only the first NSIG-K
C significant figures of B(N) can be trusted.
C
C
C Intrinsic functions required are:
C
C DBLE, EXP, DGAMMA, GAMMA, INT, MAX, MIN, REAL, SQRT
C
C
C Acknowledgement
C
C This program is based on a program written by David J.
C Sookne (2) that computes values of the Bessel functions J or
C I of real argument and integer order. Modifications include
C the restriction of the computation to the I Bessel function
C of non-negative real argument, the extension of the computation
C to arbitrary positive order, the inclusion of optional
C exponential scaling, and the elimination of most underflow.
C An earlier version was published in (3).
C
C References: "A Note on Backward Recurrence Algorithms," Olver,
C F. W. J., and Sookne, D. J., Math. Comp. 26, 1972,
C pp 941-947.
C
C "Bessel Functions of Real Argument and Integer Order,"
C Sookne, D. J., NBS Jour. of Res. B. 77B, 1973, pp
C 125-132.
C
C "ALGORITHM 597, Sequence of Modified Bessel Functions
C of the First Kind," Cody, W. J., Trans. Math. Soft.,
C 1983, pp. 242-245.
C
C Latest modification: May 30, 1989
C
C Modified by: W. J. Cody and L. Stoltz
C Applied Mathematics Division
C Argonne National Laboratory
C Argonne, IL 60439
C
C-------------------------------------------------------------------
integer, intent(in) :: NB
double precision, intent(out) :: B(NB)
integer, intent(out) :: NCALC
INTEGER IZE,K,L,MAGX,N,NBMX,NEND,NSIG,NSTART
double precision
1 ALPHA,CONST,EM,EMPAL,EMP2AL,EN,ENMTEN,ENSIG,
2 ENTEN,EXPARG,HALF,HALFX,ONE,P,PLAST,POLD,PSAVE,PSAVEL,
3 RTNSIG,SUM,TEMPA,TEMPB,TEMPC,TEST,TOVER,TWO,X,XLARGE,ZERO
C-------------------------------------------------------------------
C Mathematical constants
C-------------------------------------------------------------------
CS DATA ONE,TWO,ZERO,HALF,CONST/1.0E0,2.0E0,0.0E0,0.5E0,1.585E0/
DATA ONE,TWO,ZERO,HALF,CONST/1.0D0,2.0D0,0.0D0,0.5D0,1.585D0/
C-------------------------------------------------------------------
C Machine-dependent parameters
C-------------------------------------------------------------------
CS DATA NSIG,XLARGE,EXPARG /8,1.0E4,88.0E0/
CS DATA ENTEN,ENSIG,RTNSIG/1.0E38,1.0E8,1.0E-2/
CS DATA ENMTEN/4.7E-38/
DATA NSIG,XLARGE,EXPARG /16,1.0D4,709.0D0/
DATA ENTEN,ENSIG,RTNSIG/1.0D308,1.0D16,1.0D-4/
DATA ENMTEN/8.9D-308/
C-------------------------------------------------------------------
C Statement functions for conversion
C-------------------------------------------------------------------
CS CONV(N) = REAL(N)
CS FUNC(X) = GAMMA(X)
CD CONV(N) = DBLE(N)
CD FUNC(X) = DGAMMA(X)
C-------------------------------------------------------------------
C Check for X, NB, OR IZE out of range.
C-------------------------------------------------------------------
IF ((NB.GT.0) .AND. (X .GE. ZERO) .AND.
1 (ALPHA .GE. ZERO) .AND. (ALPHA .LT. ONE) .AND.
2 (((IZE .EQ. 1) .AND. (X .LE. EXPARG)) .OR.
3 ((IZE .EQ. 2) .AND. (X .LE. XLARGE)))) THEN
C-------------------------------------------------------------------
C Use 2-term ascending series for small X
C-------------------------------------------------------------------
NCALC = NB
MAGX = INT(X)
IF (X .GE. RTNSIG) THEN
C-------------------------------------------------------------------
C Initialize the forward sweep, the P-sequence of Olver
C-------------------------------------------------------------------
NBMX = NB-MAGX
N = MAGX+1
EN = dble(N+N) + (ALPHA+ALPHA)
PLAST = ONE
P = EN / X
C-------------------------------------------------------------------
C Calculate general significance test
C-------------------------------------------------------------------
TEST = ENSIG + ENSIG
IF (2*MAGX .GT. 5*NSIG) THEN
TEST = SQRT(TEST*P)
ELSE
TEST = TEST / CONST**MAGX
END IF
IF (NBMX .GE. 3) THEN
C-------------------------------------------------------------------
C Calculate P-sequence until N = NB-1. Check for possible overflow.
C-------------------------------------------------------------------
TOVER = ENTEN / ENSIG
NSTART = MAGX+2
NEND = NB - 1
DO 100 K = NSTART, NEND
N = K
EN = EN + TWO
POLD = PLAST
PLAST = P
P = EN * PLAST/X + POLD
IF (P .GT. TOVER) THEN
C-------------------------------------------------------------------
C To avoid overflow, divide P-sequence by TOVER. Calculate
C P-sequence until ABS(P) .GT. 1.
C-------------------------------------------------------------------
TOVER = ENTEN
P = P / TOVER
PLAST = PLAST / TOVER
PSAVE = P
PSAVEL = PLAST
NSTART = N + 1
60 N = N + 1
EN = EN + TWO
POLD = PLAST
PLAST = P
P = EN * PLAST/X + POLD
IF (P .LE. ONE) GO TO 60
TEMPB = EN / X
C-------------------------------------------------------------------
C Calculate backward test, and find NCALC, the highest N
C such that the test is passed.
C-------------------------------------------------------------------
TEST = POLD*PLAST / ENSIG
TEST = TEST*(HALF-HALF/(TEMPB*TEMPB))
P = PLAST * TOVER
N = N - 1
EN = EN - TWO
NEND = MIN0(NB,N)
DO 80 L = NSTART, NEND
NCALC = L
POLD = PSAVEL
PSAVEL = PSAVE
PSAVE = EN * PSAVEL/X + POLD
IF (PSAVE*PSAVEL .GT. TEST) GO TO 90
80 CONTINUE
NCALC = NEND + 1
90 NCALC = NCALC - 1
GO TO 120
END IF
100 CONTINUE
N = NEND
EN = dble(N+N) + (ALPHA+ALPHA)
C-------------------------------------------------------------------
C Calculate special significance test for NBMX .GT. 2.
C-------------------------------------------------------------------
TEST = MAX(TEST,SQRT(PLAST*ENSIG)*SQRT(P+P))
END IF
C-------------------------------------------------------------------
C Calculate P-sequence until significance test passed.
C-------------------------------------------------------------------
110 N = N + 1
EN = EN + TWO
POLD = PLAST
PLAST = P
P = EN * PLAST/X + POLD
IF (P .LT. TEST) GO TO 110
C-------------------------------------------------------------------
C Initialize the backward recursion and the normalization sum.
C-------------------------------------------------------------------
120 N = N + 1
EN = EN + TWO
TEMPB = ZERO
TEMPA = ONE / P
EM = dble(N) - ONE
EMPAL = EM + ALPHA
EMP2AL = (EM - ONE) + (ALPHA + ALPHA)
SUM = TEMPA * EMPAL * EMP2AL / EM
NEND = N - NB
IF (NEND .LT. 0) THEN
C-------------------------------------------------------------------
C N .LT. NB, so store B(N) and set higher orders to zero.
C-------------------------------------------------------------------
B(N) = TEMPA
NEND = -NEND
DO L = 1, NEND
B(N+L) = ZERO
enddo
ELSE
IF (NEND .GT. 0) THEN
C-------------------------------------------------------------------
C Recur backward via difference equation, calculating (but
C not storing) B(N), until N = NB.
C-------------------------------------------------------------------
DO 140 L = 1, NEND
N = N - 1
EN = EN - TWO
TEMPC = TEMPB
TEMPB = TEMPA
TEMPA = (EN*TEMPB) / X + TEMPC
EM = EM - ONE
EMP2AL = EMP2AL - ONE
IF (N .EQ. 1) GO TO 150
IF (N .EQ. 2) EMP2AL = ONE
EMPAL = EMPAL - ONE
SUM = (SUM + TEMPA*EMPAL) * EMP2AL / EM
140 CONTINUE
END IF
C-------------------------------------------------------------------
C Store B(NB)
C-------------------------------------------------------------------
150 B(N) = TEMPA
IF (NB .LE. 1) THEN
SUM = (SUM + SUM) + TEMPA
GO TO 230
END IF
C-------------------------------------------------------------------
C Calculate and Store B(NB-1)
C-------------------------------------------------------------------
N = N - 1
EN = EN - TWO
B(N) = (EN*TEMPA) / X + TEMPB
IF (N .EQ. 1) GO TO 220
EM = EM - ONE
EMP2AL = EMP2AL - ONE
IF (N .EQ. 2) EMP2AL = ONE
EMPAL = EMPAL - ONE
SUM = (SUM + B(N)*EMPAL) * EMP2AL / EM
END IF
NEND = N - 2
IF (NEND .GT. 0) THEN
C-------------------------------------------------------------------
C Calculate via difference equation and store B(N), until N = 2.
C-------------------------------------------------------------------
DO 200 L = 1, NEND
N = N - 1
EN = EN - TWO
B(N) = (EN*B(N+1)) / X +B(N+2)
EM = EM - ONE
EMP2AL = EMP2AL - ONE
IF (N .EQ. 2) EMP2AL = ONE
EMPAL = EMPAL - ONE
SUM = (SUM + B(N)*EMPAL) * EMP2AL / EM
200 CONTINUE
END IF
C-------------------------------------------------------------------
C Calculate B(1)
C-------------------------------------------------------------------
B(1) = TWO*EMPAL*B(2) / X + B(3)
220 SUM = (SUM + SUM) + B(1)
C-------------------------------------------------------------------
C Normalize. Divide all B(N) by sum.
C-------------------------------------------------------------------
230 IF (ALPHA .NE. ZERO)
1 SUM = SUM * gamma(ONE+ALPHA) * (X*HALF)**(-ALPHA)
IF (IZE .EQ. 1) SUM = SUM * EXP(-X)
TEMPA = ENMTEN
IF (SUM .GT. ONE) TEMPA = TEMPA * SUM
DO 260 N = 1, NB
IF (B(N) .LT. TEMPA) B(N) = ZERO
B(N) = B(N) / SUM
260 CONTINUE
RETURN
C-------------------------------------------------------------------
C Two-term ascending series for small X.
C-------------------------------------------------------------------
ELSE
TEMPA = ONE
EMPAL = ONE + ALPHA
HALFX = ZERO
IF (X .GT. ENMTEN) HALFX = HALF * X
IF (ALPHA .NE. ZERO) TEMPA = HALFX**ALPHA / gamma(EMPAL)
IF (IZE .EQ. 2) TEMPA = TEMPA * EXP(-X)
TEMPB = ZERO
IF ((X+ONE) .GT. ONE) TEMPB = HALFX * HALFX
B(1) = TEMPA + TEMPA*TEMPB / EMPAL
IF ((X .NE. ZERO) .AND. (B(1) .EQ. ZERO)) NCALC = 0
IF (NB .GT. 1) THEN
IF (X .EQ. ZERO) THEN
DO 310 N = 2, NB
B(N) = ZERO
310 CONTINUE
ELSE
C-------------------------------------------------------------------
C Calculate higher-order functions.
C-------------------------------------------------------------------
TEMPC = HALFX
TOVER = (ENMTEN + ENMTEN) / X
IF (TEMPB .NE. ZERO) TOVER = ENMTEN / TEMPB
DO 340 N = 2, NB
TEMPA = TEMPA / EMPAL
EMPAL = EMPAL + ONE
TEMPA = TEMPA * TEMPC
IF (TEMPA .LE. TOVER*EMPAL) TEMPA = ZERO
B(N) = TEMPA + TEMPA*TEMPB / EMPAL
IF ((B(N) .EQ. ZERO) .AND. (NCALC .GT. N))
1 NCALC = N-1
340 CONTINUE
END IF
END IF
END IF
ELSE
NCALC = MIN0(NB,0)-1
END IF
RETURN
C---------- Last line of RIBESL ----------
END subroutine ribesl
end module rji