@@ -19,13 +19,13 @@ def _allocate_new_param(
19
19
p : dict [str , Sequence [float ]]
20
20
) -> dict [str , str | bool | int | Sequence [float ]]:
21
21
return {
22
- ' paramset_type' : ' unconstrained' ,
23
- ' n_parameters' : 1 ,
24
- ' is_shared' : True ,
25
- ' inits' : p [' inits' ],
26
- ' bounds' : p [' bounds' ],
27
- ' is_scalar' : True ,
28
- ' fixed' : False ,
22
+ " paramset_type" : " unconstrained" ,
23
+ " n_parameters" : 1 ,
24
+ " is_shared" : True ,
25
+ " inits" : p [" inits" ],
26
+ " bounds" : p [" bounds" ],
27
+ " is_scalar" : True ,
28
+ " fixed" : False ,
29
29
}
30
30
31
31
@@ -45,30 +45,30 @@ class _builder(BaseBuilder):
45
45
is_shared = False
46
46
47
47
def __init__ (self , config ):
48
- self .builder_data = {' funcs' : {}}
48
+ self .builder_data = {" funcs" : {}}
49
49
self .config = config
50
50
51
51
def collect (self , thismod , nom ):
52
52
maskval = True if thismod else False
53
53
mask = [maskval ] * len (nom )
54
- return {' mask' : mask }
54
+ return {" mask" : mask }
55
55
56
56
def append (self , key , channel , sample , thismod , defined_samp ):
57
57
self .builder_data .setdefault (key , {}).setdefault (sample , {}).setdefault (
58
- ' data' , {' mask' : []}
58
+ " data" , {" mask" : []}
59
59
)
60
60
nom = (
61
- defined_samp [' data' ]
61
+ defined_samp [" data" ]
62
62
if defined_samp
63
63
else [0.0 ] * self .config .channel_nbins [channel ]
64
64
)
65
65
moddata = self .collect (thismod , nom )
66
- self .builder_data [key ][sample ][' data' ][ ' mask' ] += moddata [' mask' ]
66
+ self .builder_data [key ][sample ][" data" ][ " mask" ] += moddata [" mask" ]
67
67
if thismod :
68
- if thismod [' name' ] != funcname :
68
+ if thismod [" name" ] != funcname :
69
69
print (thismod )
70
- self .builder_data [' funcs' ].setdefault (
71
- thismod [' name' ], thismod [' data' ][ ' expr' ]
70
+ self .builder_data [" funcs" ].setdefault (
71
+ thismod [" name" ], thismod [" data" ][ " expr" ]
72
72
)
73
73
self .required_parsets = {
74
74
k : [_allocate_new_param (v )] for k , v in newparams .items ()
@@ -85,14 +85,14 @@ def make_applier(
85
85
) -> BaseApplier :
86
86
class _applier (BaseApplier ):
87
87
name = funcname
88
- op_code = ' multiplication'
88
+ op_code = " multiplication"
89
89
90
90
def __init__ (self , modifiers , pdfconfig , builder_data , batch_size = None ):
91
- self .funcs = [make_func (v , deps ) for v in builder_data [' funcs' ].values ()]
91
+ self .funcs = [make_func (v , deps ) for v in builder_data [" funcs" ].values ()]
92
92
93
93
self .batch_size = batch_size
94
94
pars_for_applier = deps
95
- _modnames = [f' { mtype } /{ m } ' for m , mtype in modifiers ]
95
+ _modnames = [f" { mtype } /{ m } " for m , mtype in modifiers ]
96
96
97
97
parfield_shape = (
98
98
(self .batch_size , pdfconfig .npars )
@@ -103,11 +103,11 @@ def __init__(self, modifiers, pdfconfig, builder_data, batch_size=None):
103
103
parfield_shape , pdfconfig .par_map , pars_for_applier
104
104
)
105
105
self ._custommod_mask = [
106
- [[builder_data [modname ][s ][' data' ][ ' mask' ]] for s in pdfconfig .samples ]
106
+ [[builder_data [modname ][s ][" data" ][ " mask" ]] for s in pdfconfig .samples ]
107
107
for modname in _modnames
108
108
]
109
109
self ._precompute ()
110
- events .subscribe (' tensorlib_changed' )(self ._precompute )
110
+ events .subscribe (" tensorlib_changed" )(self ._precompute )
111
111
112
112
def _precompute (self ):
113
113
tensorlib , _ = get_backend ()
@@ -132,15 +132,15 @@ def apply(self, pars):
132
132
tensorlib , _ = get_backend ()
133
133
if self .batch_size is None :
134
134
deps = self .param_viewer .get (pars )
135
- print (' deps' , deps .shape )
135
+ print (" deps" , deps .shape )
136
136
results = tensorlib .astensor ([f (deps ) for f in self .funcs ])
137
- results = tensorlib .einsum (' msab,m->msab' , self .custommod_mask , results )
137
+ results = tensorlib .einsum (" msab,m->msab" , self .custommod_mask , results )
138
138
else :
139
139
deps = self .param_viewer .get (pars )
140
- print (' deps' , deps .shape )
140
+ print (" deps" , deps .shape )
141
141
results = tensorlib .astensor ([f (deps ) for f in self .funcs ])
142
142
results = tensorlib .einsum (
143
- ' msab,ma->msab' , self .custommod_mask , results
143
+ " msab,ma->msab" , self .custommod_mask , results
144
144
)
145
145
results = tensorlib .where (
146
146
self .custommod_mask_bool , results , self .custommod_default
0 commit comments