|
| 1 | +--- |
| 2 | +layout: default |
| 3 | +title: BrainBeats |
| 4 | +long_title: BrainBeats |
| 5 | +parent: Plugins |
| 6 | +render_with_liquid: false |
| 7 | +nav_order: 9 |
| 8 | +--- |
| 9 | +To view the plugin source code, please visit the plugin's [GitHub repository](https://github.com/amisepa/BrainBeats). |
| 10 | + |
| 11 | +<!-- <p align="center"> --> |
| 12 | +# BrainBeats |
| 13 | +<!-- </p> --> |
| 14 | + |
| 15 | +<p align="center" width="100%"> |
| 16 | + <img width="30%" src="https://github.com/amisepa/BrainBeats/blob/main/brainbeats_logo2.png"> |
| 17 | +</p> |
| 18 | + |
| 19 | +The BrainBeats toolbox, implemented as an EEGLAB plugin, allows joint processing and analysis of EEG and cardiovascular signals (ECG and PPG) for brain-heart interplay research. Both the general user interface (GUI) and command line are supported (see tutorial). BrainBeats currently supports: 1) Heartbeat-evoked potentials (HEP) and oscillations (HEO); 2) Extraction of EEG and HRV features; 3) Extraction of heart artifacts from EEG signals; 4) brain-heart coherence. |
| 20 | + |
| 21 | + |
| 22 | +## THREE METHODS AVAILABLE |
| 23 | + |
| 24 | +<p align="center" width="100%"> |
| 25 | + <img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/diagram.png"> |
| 26 | +</p> |
| 27 | + |
| 28 | +1) Process EEG data for heartbeat-evoked potentials (HEP) analysis using ECG or PPG signals. Steps include signal processing of EEG and cardiovascular signals, inserting R-peak markers into the EEG data, segmentation around the R-peaks with optimal window length, time-frequency decomposition. |
| 29 | + |
| 30 | + |
| 31 | +<p align="center"> |
| 32 | + Example of HEP at the subject level, obtained from simultaneous EEG-ECG signals |
| 33 | +</p> |
| 34 | +<p align="center" width="100%"> |
| 35 | + <img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/fig11.png"> |
| 36 | +</p> |
| 37 | + |
| 38 | +<p align="center"> |
| 39 | + Example of HEP at the subject level, obtained from simultaneous EEG-PPG signals |
| 40 | +</p> |
| 41 | +<p align="center" width="100%"> |
| 42 | + <img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/fig17.png"> |
| 43 | +</p> |
| 44 | + |
| 45 | +2) Extract EEG and HRV features from continuous data in the time, frequency, and nonlinear domains. |
| 46 | + - HRV time domain: SDNN, RMSSD, pNN50. |
| 47 | + - HRV frequency domain: VLF-power, ULF-power, LF-power, HF-power, LF:HF ratio, Total power. |
| 48 | + - HRV nonlinear domain: Poincare, fuzzy entropy, fractal dimension, PRSA. |
| 49 | + |
| 50 | + - EEG frequency domain: average band power (delta, theta, alpha, beta, gamma), individual alpha frequency (IAF), alpha asymmetry. |
| 51 | + - EEG nonlinear domain: fuzzy entropy, fractal dimension |
| 52 | + |
| 53 | + |
| 54 | +<p align="center"> |
| 55 | + Example of power spectral density (PSD) estimated from HRV and EEG data |
| 56 | +</p> |
| 57 | +<p align="center" width="100%"> |
| 58 | + <img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/fig21.png"> |
| 59 | +</p> |
| 60 | + |
| 61 | +<p align="center"> |
| 62 | + Example of EEG features extracted from sample dataset |
| 63 | +</p> |
| 64 | +<p align="center" width="100%"> |
| 65 | + <img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/fig22.png"> |
| 66 | +</p> |
| 67 | + |
| 68 | + |
| 69 | +3) Remove heart components from EEG signals using ICA and ICLabel. |
| 70 | + |
| 71 | +<p align="center"> |
| 72 | + Example of extraction of cardiovascular components from EEG signals |
| 73 | +</p> |
| 74 | +<p align="center" width="100%"> |
| 75 | + <img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/fig27.png"> |
| 76 | +</p> |
| 77 | + |
| 78 | + |
| 79 | +4) Compute brain-heart coherence (beta version, please test and give feedback) |
| 80 | + |
| 81 | +<p align="center"> |
| 82 | + Example of several brain-heart coherence measures computed with BrainBeats from simultaneous EEG and ECG signals |
| 83 | +</p> |
| 84 | +<p align="center" width="100%"> |
| 85 | + <img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/coherence_allfreqs.png"> |
| 86 | +</p> |
| 87 | + |
| 88 | +<p align="center"> |
| 89 | + Scalp topography showing scalp regions coherent with ECG signal for each frequency band |
| 90 | +</p> |
| 91 | +<p align="center" width="100%"> |
| 92 | + <img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/coherence_topo.png"> |
| 93 | +</p> |
| 94 | + |
| 95 | +## Requirements |
| 96 | + |
| 97 | +- MATLAB installed (https://www.mathworks.com/downloads) |
| 98 | +- EEGLAB installed (https://github.com/sccn/eeglab) |
| 99 | +- Some data containing EEG and cardiovascular signals (ECG or PPG) within the same file (i.e. recorded simultaneously). |
| 100 | + Or use the tutorial dataset provided in this repository located in the "sample_data" folder. |
| 101 | + |
| 102 | +## Step-by-step tutorial |
| 103 | + |
| 104 | +See our publication for a step-by-step tutorial using the sample dataset: https://www.jove.com/t/65829/brainbeats-as-an-open-source-eeglab-plugin-to-jointly-analyze-eeg |
| 105 | + |
| 106 | +Full-text preprint: https://www.biorxiv.org/content/10.1101/2023.06.01.543272v3.full |
| 107 | + |
| 108 | +## Version history |
| 109 | + |
| 110 | +v1.5 (5/2/2024) - METHOD 4 (brain-heart coherence) added |
| 111 | + |
| 112 | +v1.4 (4/1/2024) - publication JoVE (methods 1, 2, 3) |
0 commit comments