forked from chn-lee-yumi/MaterialSearch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_assets.py
260 lines (232 loc) · 9.34 KB
/
process_assets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# 预处理图片和视频,建立索引,加快搜索速度
import concurrent.futures
import logging
import traceback
import cv2
import numpy as np
import requests
import torch
from PIL import Image
from tqdm import trange
from transformers import AutoModelForZeroShotImageClassification, AutoProcessor
from config import *
logger = logging.getLogger(__name__)
logger.info("Loading model...")
model = AutoModelForZeroShotImageClassification.from_pretrained(MODEL_NAME).to(torch.device(DEVICE))
processor = AutoProcessor.from_pretrained(MODEL_NAME)
logger.info("Model loaded.")
def get_image_feature(images):
"""
:param images: 图片
:return: feature
"""
feature = None
try:
inputs = processor(images=images, return_tensors="pt")["pixel_values"].to(torch.device(DEVICE))
feature = model.get_image_features(inputs).detach().cpu().numpy()
except Exception as e:
logger.warning(f"处理图片报错:{repr(e)}")
traceback.print_stack()
return feature
def get_image_data(path: str, ignore_small_images: bool = True):
"""
获取图片像素数据,如果出错返回 None
:param path: string, 图片路径
:param ignore_small_images: bool, 是否忽略尺寸过小的图片
:return: <class 'numpy.nparray'>, 图片数据,如果出错返回 None
"""
try:
image = Image.open(path)
if ignore_small_images:
width, height = image.size
if width < IMAGE_MIN_WIDTH or height < IMAGE_MIN_HEIGHT:
return None
# processor 中也会这样预处理 Image
# 在这里提前转为 np.array 避免到时候抛出异常
image = image.convert('RGB')
image = np.array(image)
return image
except Exception as e:
logger.warning(f"打开图片报错:{path} {repr(e)}")
return None
def process_image(path, ignore_small_images=True):
"""
处理图片,返回图片特征
:param path: string, 图片路径
:param ignore_small_images: bool, 是否忽略尺寸过小的图片
:return: <class 'numpy.nparray'>, 图片特征
"""
image = get_image_data(path, ignore_small_images)
if image is None:
return None
feature = get_image_feature(image)
return feature
def process_images(path_list, ignore_small_images=True):
"""
处理图片,返回图片特征
:param path_list: string, 图片路径列表
:param ignore_small_images: bool, 是否忽略尺寸过小的图片
:return: <class 'numpy.nparray'>, 图片特征
"""
images = []
for path in path_list.copy():
image = get_image_data(path, ignore_small_images)
if image is None:
path_list.remove(path)
continue
images.append(image)
if not images:
return None, None
feature = get_image_feature(images)
return path_list, feature
def process_web_image(url):
"""
处理网络图片,返回图片特征
:param url: string, 图片URL
:return: <class 'numpy.nparray'>, 图片特征
"""
try:
image = Image.open(requests.get(url, stream=True).raw)
except Exception as e:
logger.warning("获取图片报错:%s %s" % (url, repr(e)))
return None
feature = get_image_feature(image)
return feature
def get_frames(video: cv2.VideoCapture):
"""
获取视频的帧数据
:return: (list[int], list[array]) (帧编号列表, 帧像素数据列表) 元组
"""
frame_rate = round(video.get(cv2.CAP_PROP_FPS))
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
logger.debug(f"fps: {frame_rate} total: {total_frames}")
ids, frames = [], []
for current_frame in trange(
0, total_frames, FRAME_INTERVAL * frame_rate, desc="当前进度", unit="frame"
):
# 在 FRAME_INTERVAL 为 2(默认值),frame_rate 为 24
# 即 FRAME_INTERVAL * frame_rate == 48 时测试
# 直接设置当前帧的运行效率低于使用 grab 跳帧
# 如果需要跳的帧足够多,也许直接设置效率更高
# video.set(cv2.CAP_PROP_POS_FRAMES, current_frame)
ret, frame = video.read()
if not ret:
break
ids.append(current_frame // frame_rate)
frames.append(frame)
if len(frames) == SCAN_PROCESS_BATCH_SIZE:
yield ids, frames
ids = []
frames = []
for _ in range(FRAME_INTERVAL * frame_rate - 1):
video.grab() # 跳帧
yield ids, frames
def process_video(path):
"""
处理视频并返回处理完成的数据
返回一个生成器,每调用一次则返回视频下一个帧的数据
:param path: string, 视频路径
:return: [int, <class 'numpy.nparray'>], [当前是第几帧(被采集的才算),图片特征]
"""
logger.info(f"处理视频中:{path}")
try:
video = cv2.VideoCapture(path)
for ids, frames in get_frames(video):
features = get_image_feature(frames)
if features is None:
logger.warning("features is None")
continue
for id, feature in zip(ids, features):
yield id, feature
except Exception as e:
logger.warning(f"处理视频出错:{path} {repr(e)}")
return
def process_text(input_text):
"""
预处理文字,返回文字特征
:param input_text: string, 被处理的字符串
:return: <class 'numpy.nparray'>, 文字特征
"""
feature = None
if not input_text:
return None
try:
text = processor(text=input_text, return_tensors="pt", padding=True)["input_ids"].to(torch.device(DEVICE))
feature = model.get_text_features(text).detach().cpu().numpy()
except Exception as e:
logger.warning(f"处理文字报错:{repr(e)}")
traceback.print_stack()
return feature
def match_text_and_image(text_feature, image_feature):
"""
匹配文字和图片,返回余弦相似度
:param text_feature: <class 'numpy.nparray'>, 文字特征
:param image_feature: <class 'numpy.nparray'>, 图片特征
:return: <class 'numpy.nparray'>, 文字和图片的余弦相似度,shape=(1, 1)
"""
score = (image_feature @ text_feature.T) / (
np.linalg.norm(image_feature) * np.linalg.norm(text_feature)
)
# 上面的计算等价于下面三步:
# new_image_feature = image_feature / np.linalg.norm(image_feature)
# new_text_feature = text_feature / np.linalg.norm(text_feature)
# score = (new_image_feature @ new_text_feature.T)
return score
def normalize_features(features):
"""
归一化
:param features: [<class 'numpy.nparray'>], 特征
:return: <class 'numpy.nparray'>, 归一化后的特征
"""
return features / np.linalg.norm(features, axis=1, keepdims=True)
def multithread_normalize(features):
"""
多线程执行归一化,只有对大矩阵效果才好
:param features: [<class 'numpy.nparray'>], 特征
:return: <class 'numpy.nparray'>, 归一化后的特征
"""
num_threads = os.cpu_count()
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
# 将图像特征分成等分,每个线程处理一部分
chunk_size = len(features) // num_threads
chunks = [
features[i: i + chunk_size] for i in range(0, len(features), chunk_size)
]
# 并发执行特征归一化
normalized_chunks = executor.map(normalize_features, chunks)
# 将处理后的特征重新合并
return np.concatenate(list(normalized_chunks))
def match_batch(
positive_feature,
negative_feature,
image_features,
positive_threshold,
negative_threshold,
):
"""
匹配image_feature列表并返回余弦相似度
:param positive_feature: <class 'numpy.ndarray'>, 正向提示词特征
:param negative_feature: <class 'numpy.ndarray'>, 反向提示词特征
:param image_features: [<class 'numpy.ndarray'>], 图片特征列表
:param positive_threshold: int/float, 正向提示分数阈值,高于此分数才显示
:param negative_threshold: int/float, 反向提示分数阈值,低于此分数才显示
:return: <class 'numpy.nparray'>, 提示词和每个图片余弦相似度列表,shape=(n, ),如果小于正向提示分数阈值或大于反向提示分数阈值则会置0
"""
# 计算余弦相似度
if len(image_features) > 1024: # 多线程只对大矩阵效果好,1024是随便写的
new_features = multithread_normalize(image_features)
else:
new_features = normalize_features(image_features)
if positive_feature is None: # 没有正向feature就把分数全部设成1
positive_scores = np.ones(len(new_features))
else:
new_text_positive_feature = positive_feature / np.linalg.norm(positive_feature)
positive_scores = (new_features @ new_text_positive_feature.T).squeeze(-1)
if negative_feature is not None:
new_text_negative_feature = negative_feature / np.linalg.norm(negative_feature)
negative_scores = (new_features @ new_text_negative_feature.T).squeeze(-1)
# 根据阈值进行过滤
scores = np.where(positive_scores < positive_threshold / 100, 0, positive_scores)
if negative_feature is not None:
scores = np.where(negative_scores > negative_threshold / 100, 0, scores)
return scores