-
Notifications
You must be signed in to change notification settings - Fork 5
/
V_TriMetric.cpp
1091 lines (913 loc) · 28.4 KB
/
V_TriMetric.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*=========================================================================
Module: V_TriMetric.cpp
Copyright 2003,2006,2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
Under the terms of Contract DE-NA0003525 with NTESS,
the U.S. Government retains certain rights in this software.
See LICENSE for details.
=========================================================================*/
/*
*
* TriMetric.cpp contains quality calculations for Tris
*
* This file is part of VERDICT
*
*/
#include "V_GaussIntegration.hpp"
#include "VerdictVector.hpp"
#include "verdict.h"
#include "verdict_defines.hpp"
#include <algorithm>
#include <array>
namespace VERDICT_NAMESPACE
{
static const double sqrt3 = std::sqrt(3.0);
static const double aspect_ratio_normal_coeff = sqrt3 / 6.;
static const double two_times_sqrt3 = 2 * sqrt3;
static const double two_over_sqrt3 = 2. / sqrt3;
/*!
get weights based on the average area of a set of
tris
*/
static int tri_get_weight(
double& m11, double& m21, double& m12, double& m22, double average_tri_area)
{
m11 = 1;
m21 = 0;
m12 = 0.5;
m22 = 0.5 * sqrt3;
double scale = std::sqrt(2.0 * average_tri_area / (m11 * m22 - m21 * m12));
m11 *= scale;
m21 *= scale;
m12 *= scale;
m22 *= scale;
return 1;
}
/*!
the edge ratio of a triangle
NB (P. Pebay 01/14/07):
Hmax / Hmin where Hmax and Hmin are respectively the maximum and the
minimum edge lengths
*/
double tri_edge_ratio(int /*num_nodes*/, const double coordinates[][3])
{
// three vectors for each side
VerdictVector a(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
coordinates[1][2] - coordinates[0][2]);
VerdictVector b(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
coordinates[2][2] - coordinates[1][2]);
VerdictVector c(coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1],
coordinates[0][2] - coordinates[2][2]);
double a2 = a.length_squared();
double b2 = b.length_squared();
double c2 = c.length_squared();
double m2, M2;
if (a2 < b2)
{
if (b2 < c2)
{
m2 = a2;
M2 = c2;
}
else // b2 <= a2
{
if (a2 < c2)
{
m2 = a2;
M2 = b2;
}
else // c2 <= a2
{
m2 = c2;
M2 = b2;
}
}
}
else // b2 <= a2
{
if (a2 < c2)
{
m2 = b2;
M2 = c2;
}
else // c2 <= a2
{
if (b2 < c2)
{
m2 = b2;
M2 = a2;
}
else // c2 <= b2
{
m2 = c2;
M2 = a2;
}
}
}
if (m2 < VERDICT_DBL_MIN)
{
return (double)VERDICT_DBL_MAX;
}
else
{
double edge_ratio;
edge_ratio = std::sqrt(M2 / m2);
if (edge_ratio > 0)
{
return (double)std::min(edge_ratio, VERDICT_DBL_MAX);
}
return (double)std::max(edge_ratio, -VERDICT_DBL_MAX);
}
}
/*!
the aspect ratio of a triangle
NB (P. Pebay 01/14/07):
Hmax / ( 2.0 * sqrt(3.0) * IR) where Hmax is the maximum edge length
and IR is the inradius
note that previous incarnations of verdict used "v_tri_aspect_ratio" to denote
what is now called "v_tri_aspect_frobenius"
*/
template <typename CoordsContainerType>
double tri_aspect_ratio_impl(int /*num_nodes*/, const CoordsContainerType coordinates, const int dimension)
{
// three vectors for each side
const VerdictVector a{coordinates[0], coordinates[1], dimension};
const VerdictVector b{coordinates[1], coordinates[2], dimension};
const VerdictVector c{coordinates[2], coordinates[0], dimension};
const double a1 = a.length();
const double b1 = b.length();
const double c1 = c.length();
double hm = a1 > b1 ? a1 : b1;
hm = hm > c1 ? hm : c1;
const VerdictVector ab = a * b;
const double denominator = ab.length();
if (denominator < VERDICT_DBL_MIN)
{
return (double)VERDICT_DBL_MAX;
}
else
{
const double aspect_ratio = aspect_ratio_normal_coeff * hm * (a1 + b1 + c1) / denominator;
if (aspect_ratio > 0)
{
return (double)std::min(aspect_ratio, VERDICT_DBL_MAX);
}
return (double)std::max(aspect_ratio, -VERDICT_DBL_MAX);
}
}
double tri_aspect_ratio(int num_nodes, const double coordinates[][3])
{
return tri_aspect_ratio_impl(num_nodes, coordinates, 3);
}
double tri_aspect_ratio_from_loc_ptrs(int num_nodes, const double * const *coordinates, const int dimension)
{
return tri_aspect_ratio_impl(num_nodes, coordinates, dimension);
}
/*!
the radius ratio of a triangle
NB (P. Pebay 01/13/07):
CR / (2.0*IR) where CR is the circumradius and IR is the inradius
The radius ratio is also known to VERDICT, for tetrahedral elements only,
as the "aspect beta".
*/
double tri_radius_ratio(int /*num_nodes*/, const double coordinates[][3])
{
// three vectors for each side
VerdictVector a(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
coordinates[1][2] - coordinates[0][2]);
VerdictVector b(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
coordinates[2][2] - coordinates[1][2]);
VerdictVector c(coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1],
coordinates[0][2] - coordinates[2][2]);
double a1 = a.length();
double b1 = b.length();
double c1 = c.length();
VerdictVector ab = a * b;
double denominator = ab.length_squared();
if (denominator < VERDICT_DBL_MIN)
{
return (double)VERDICT_DBL_MAX;
}
double radius_ratio;
radius_ratio = .25 * a1 * b1 * c1 * (a1 + b1 + c1) / denominator;
if (radius_ratio > 0)
{
return (double)std::min(radius_ratio, VERDICT_DBL_MAX);
}
return (double)std::max(radius_ratio, -VERDICT_DBL_MAX);
}
/*!
the Frobenius aspect of a tri
srms^2/(2 * sqrt(3.0) * area)
where srms^2 is sum of the lengths squared
NB (P. Pebay 01/14/07):
this method was called "aspect ratio" in earlier incarnations of VERDICT
*/
double tri_aspect_frobenius(int /*num_nodes*/, const double coordinates[][3])
{
// three vectors for each side
VerdictVector side1(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
coordinates[1][2] - coordinates[0][2]);
VerdictVector side2(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
coordinates[2][2] - coordinates[1][2]);
VerdictVector side3(coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1],
coordinates[0][2] - coordinates[2][2]);
// sum the lengths squared of each side
double srms = (side1.length_squared() + side2.length_squared() + side3.length_squared());
// find two times the area of the triangle by cross product
double areaX2 = ((side1 * (-side3)).length());
if (areaX2 == 0.0)
{
return (double)VERDICT_DBL_MAX;
}
double aspect = (double)(srms / (two_times_sqrt3 * (areaX2)));
if (aspect > 0)
{
return (double)std::min(aspect, VERDICT_DBL_MAX);
}
return (double)std::max(aspect, -VERDICT_DBL_MAX);
}
/*!
The area of a tri
0.5 * jacobian at a node
*/
template <typename CoordsContainerType>
double tri_area_impl(int num_nodes, const CoordsContainerType coordinates, const int dimension)
{
if (3 == num_nodes)
{
// two vectors for two sides
const VerdictVector side1{ coordinates[0], coordinates[1], dimension };
const VerdictVector side3{ coordinates[0], coordinates[2], dimension };
// the cross product of the two vectors representing two sides of the
// triangle
const VerdictVector tmp = side1 * side3;
// return the magnitude of the vector divided by two
const double area = 0.5 * tmp.length();
if (area > 0)
{
return (double)std::min(area, VERDICT_DBL_MAX);
}
return (double)std::max(area, -VERDICT_DBL_MAX);
}
else
{
const double *tmp_coords[3];
double tri_area = 0.0;
if (6 == num_nodes)
{
// 035
tmp_coords[0] = coordinates[0];
tmp_coords[1] = coordinates[3];
tmp_coords[2] = coordinates[5];
tri_area += tri_area_impl(3, tmp_coords, dimension);
// 314
tmp_coords[0] = coordinates[3];
tmp_coords[1] = coordinates[1];
tmp_coords[2] = coordinates[4];
tri_area += tri_area_impl(3, tmp_coords, dimension);
// 425
tmp_coords[0] = coordinates[4];
tmp_coords[1] = coordinates[2];
tmp_coords[2] = coordinates[5];
tri_area += tri_area_impl(3, tmp_coords, dimension);
// 345
tmp_coords[0] = coordinates[3];
tmp_coords[1] = coordinates[4];
tmp_coords[2] = coordinates[5];
tri_area += tri_area_impl(3, tmp_coords, dimension);
}
else if (7 == num_nodes)
{
//center node 6
tmp_coords[2] = coordinates[6];
// 036
tmp_coords[0] = coordinates[0];
tmp_coords[1] = coordinates[3];
tri_area += tri_area_impl(3, tmp_coords, dimension);
// 316
tmp_coords[0] = coordinates[3];
tmp_coords[1] = coordinates[1];
tri_area += tri_area_impl(3, tmp_coords, dimension);
// 146
tmp_coords[0] = coordinates[1];
tmp_coords[1] = coordinates[4];
tri_area += tri_area_impl(3, tmp_coords, dimension);
// 426
tmp_coords[0] = coordinates[4];
tmp_coords[1] = coordinates[2];
tri_area += tri_area_impl(3, tmp_coords, dimension);
// 256
tmp_coords[0] = coordinates[2];
tmp_coords[1] = coordinates[5];
tri_area += tri_area_impl(3, tmp_coords, dimension);
// 506
tmp_coords[0] = coordinates[5];
tmp_coords[1] = coordinates[0];
tri_area += tri_area_impl(3, tmp_coords, dimension);
}
else if( 4 == num_nodes )
{
//center node 3
tmp_coords[2] = coordinates[3];
// 013
tmp_coords[0] = coordinates[0];
tmp_coords[1] = coordinates[1];
tri_area += tri_area_impl(3, tmp_coords, dimension);
// 123
tmp_coords[0] = coordinates[1];
tmp_coords[1] = coordinates[2];
tri_area += tri_area_impl(3, tmp_coords, dimension);
// 203
tmp_coords[0] = coordinates[2];
tmp_coords[1] = coordinates[0];
tri_area += tri_area_impl(3, tmp_coords, dimension);
}
return tri_area;
}
}
double tri_area(int num_nodes, const double coordinates[][3])
{
return tri_area_impl(num_nodes, coordinates, 3);
}
double tri_area_from_loc_ptrs(int num_nodes, const double * const *coordinates, const int dimension)
{
return tri_area_impl(num_nodes, coordinates, dimension);
}
/*!
The minimum angle of a tri
The minimum angle of a tri is the minimum angle between
two adjacents sides out of all three corners of the triangle.
*/
double tri_minimum_angle(int /*num_nodes*/, const double coordinates[][3])
{
// vectors for all the sides
VerdictVector sides[4];
sides[0].set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
coordinates[1][2] - coordinates[0][2]);
sides[1].set(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
coordinates[2][2] - coordinates[1][2]);
sides[2].set(coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1],
coordinates[2][2] - coordinates[0][2]);
// in case we need to find the interior angle
// between sides 0 and 1
sides[3] = -sides[1];
// calculate the lengths squared of the sides
double sides_lengths[3];
sides_lengths[0] = sides[0].length_squared();
sides_lengths[1] = sides[1].length_squared();
sides_lengths[2] = sides[2].length_squared();
if (sides_lengths[0] == 0.0 || sides_lengths[1] == 0.0 || sides_lengths[2] == 0.0)
{
return 0.0;
}
// using the law of sines, we know that the minimum
// angle is opposite of the shortest side
// find the shortest side
int short_side = 0;
if (sides_lengths[1] < sides_lengths[0])
{
short_side = 1;
}
if (sides_lengths[2] < sides_lengths[short_side])
{
short_side = 2;
}
// from the shortest side, calculate the angle of the
// opposite angle
double min_angle;
if (short_side == 0)
{
min_angle = sides[2].interior_angle(sides[1]);
}
else if (short_side == 1)
{
min_angle = sides[0].interior_angle(sides[2]);
}
else
{
min_angle = sides[0].interior_angle(sides[3]);
}
if (min_angle > 0)
{
return (double)std::min(min_angle, VERDICT_DBL_MAX);
}
return (double)std::max(min_angle, -VERDICT_DBL_MAX);
}
/*!
The maximum angle of a tri
The maximum angle of a tri is the maximum angle between
two adjacents sides out of all three corners of the triangle.
*/
double tri_maximum_angle(int /*num_nodes*/, const double coordinates[][3])
{
// vectors for all the sides
VerdictVector sides[4];
sides[0].set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
coordinates[1][2] - coordinates[0][2]);
sides[1].set(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
coordinates[2][2] - coordinates[1][2]);
sides[2].set(coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1],
coordinates[2][2] - coordinates[0][2]);
// in case we need to find the interior angle
// between sides 0 and 1
sides[3] = -sides[1];
// calculate the lengths squared of the sides
double sides_lengths[3];
sides_lengths[0] = sides[0].length_squared();
sides_lengths[1] = sides[1].length_squared();
sides_lengths[2] = sides[2].length_squared();
if (sides_lengths[0] == 0.0 || sides_lengths[1] == 0.0 || sides_lengths[2] == 0.0)
{
return 0.0;
}
// using the law of sines, we know that the maximum
// angle is opposite of the longest side
// find the longest side
int short_side = 0;
if (sides_lengths[1] > sides_lengths[0])
{
short_side = 1;
}
if (sides_lengths[2] > sides_lengths[short_side])
{
short_side = 2;
}
// from the longest side, calculate the angle of the
// opposite angle
double max_angle;
if (short_side == 0)
{
max_angle = sides[2].interior_angle(sides[1]);
}
else if (short_side == 1)
{
max_angle = sides[0].interior_angle(sides[2]);
}
else
{
max_angle = sides[0].interior_angle(sides[3]);
}
if (max_angle > 0)
{
return (double)std::min(max_angle, VERDICT_DBL_MAX);
}
return (double)std::max(max_angle, -VERDICT_DBL_MAX);
}
double tri_equiangle_skew(int num_nodes, const double coordinates[][3])
{
double min_angle = 360.0;
double max_angle = 0.0;
min_angle = tri_minimum_angle(num_nodes, coordinates);
max_angle = tri_maximum_angle(num_nodes, coordinates);
double skew_max = (max_angle - 60.0) / 120.0;
double skew_min = (60.0 - min_angle) / 60.0;
if (skew_max > skew_min)
{
return skew_max;
}
return skew_min;
}
/*!
The condition of a tri
Condition number of the jacobian matrix at any corner
*/
template <typename CoordsContainerType>
double tri_condition_impl(int /*num_nodes*/, const CoordsContainerType coordinates, const int dimension)
{
const VerdictVector v1{coordinates[0], coordinates[1], dimension};
const VerdictVector v2{coordinates[0], coordinates[2], dimension};
const VerdictVector tri_normal = v1 * v2;
const double areax2 = tri_normal.length();
if (areax2 == 0.0)
{
return (double)VERDICT_DBL_MAX;
}
const double condition = (double)(((v1 % v1) + (v2 % v2) - (v1 % v2)) / (areax2 * sqrt3));
return (double)std::min(condition, VERDICT_DBL_MAX);
}
double tri_condition(int num_nodes, const double coordinates[][3])
{
return tri_condition_impl(num_nodes, coordinates, 3);
}
double tri_condition_from_loc_ptrs(int num_nodes, const double * const * coordinates, const int dimension)
{
return tri_condition_impl(num_nodes, coordinates, dimension);
}
/*!
The scaled jacobian of a tri
minimum of the jacobian divided by the lengths of 2 edge vectors
*/
template <typename CoordsContainerType>
double tri_scaled_jacobian_impl(int /*num_nodes*/, const CoordsContainerType coordinates, const int dimension)
{
const VerdictVector edge[3] =
{
{coordinates[0], coordinates[1], dimension},
{coordinates[0], coordinates[2], dimension},
{coordinates[1], coordinates[2], dimension},
};
const VerdictVector first = edge[1] - edge[0];
const VerdictVector second = edge[2] - edge[0];
const VerdictVector cross = first * second;
double jacobian = cross.length();
const double max_edge_length_product = std::max(edge[0].length() * edge[1].length(),
std::max(edge[1].length() * edge[2].length(), edge[0].length() * edge[2].length()));
if (max_edge_length_product < VERDICT_DBL_MIN)
{
return (double)0.0;
}
jacobian *= two_over_sqrt3;
jacobian /= max_edge_length_product;
if (jacobian > 0)
{
return (double)std::min(jacobian, VERDICT_DBL_MAX);
}
return (double)std::max(jacobian, -VERDICT_DBL_MAX);
}
double tri_scaled_jacobian(int num_nodes, const double coordinates[][3])
{
return tri_scaled_jacobian_impl(num_nodes, coordinates, 3);
}
double tri_scaled_jacobian_from_loc_ptrs(int num_nodes, const double * const * coordinates, const int dimension)
{
return tri_scaled_jacobian_impl(num_nodes, coordinates, dimension);
}
/*!
The shape of a tri
2 / condition number of weighted jacobian matrix
*/
double tri_shape(int num_nodes, const double coordinates[][3])
{
double condition = tri_condition(num_nodes, coordinates);
double shape;
if (condition <= VERDICT_DBL_MIN)
{
shape = VERDICT_DBL_MAX;
}
else
{
shape = (1 / condition);
}
if (shape > 0)
{
return (double)std::min(shape, VERDICT_DBL_MAX);
}
return (double)std::max(shape, -VERDICT_DBL_MAX);
}
/*!
The relative size of a tri
Min(J,1/J) where J is the determinant of the weighted jacobian matrix.
*/
double tri_relative_size_squared(
int /*num_nodes*/, const double coordinates[][3], double average_tri_area)
{
double w11, w21, w12, w22;
VerdictVector xxi, xet, tri_normal;
tri_get_weight(w11, w21, w12, w22, average_tri_area);
double detw = determinant(w11, w21, w12, w22);
if (detw == 0.0)
{
return 0.0;
}
xxi.set(coordinates[0][0] - coordinates[1][0], coordinates[0][1] - coordinates[1][1],
coordinates[0][2] - coordinates[1][2]);
xet.set(coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1],
coordinates[0][2] - coordinates[2][2]);
tri_normal = xxi * xet;
double deta = tri_normal.length();
if (deta == 0.0 || detw == 0.0)
{
return 0.0;
}
double size = std::pow(deta / detw, 2);
double rel_size = std::min(size, 1.0 / size);
if (rel_size > 0)
{
return (double)std::min(rel_size, VERDICT_DBL_MAX);
}
return (double)std::max(rel_size, -VERDICT_DBL_MAX);
}
/*!
The shape and size of a tri
Product of the Shape and Relative Size
*/
double tri_shape_and_size(int num_nodes, const double coordinates[][3], double average_tri_area)
{
double size, shape;
size = tri_relative_size_squared(num_nodes, coordinates, average_tri_area);
shape = tri_shape(num_nodes, coordinates);
double shape_and_size = size * shape;
if (shape_and_size > 0)
{
return (double)std::min(shape_and_size, VERDICT_DBL_MAX);
}
return (double)std::max(shape_and_size, -VERDICT_DBL_MAX);
}
/*!
The distortion of a tri
TODO: make a short definition of the distortion and comment below
*/
double tri_distortion(int num_nodes, const double coordinates[][3])
{
double distortion;
int total_number_of_gauss_points = 0;
VerdictVector aa, bb, cc, normal_at_point, xin;
double element_area = 0.;
aa.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
coordinates[1][2] - coordinates[0][2]);
bb.set(coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1],
coordinates[2][2] - coordinates[0][2]);
VerdictVector tri_normal = aa * bb;
int number_of_gauss_points = 0;
if (num_nodes == 3)
{
distortion = 1.0;
return (double)distortion;
}
else if (num_nodes >= 6)
{
total_number_of_gauss_points = 6;
number_of_gauss_points = 6;
num_nodes = 6; //seven nodes not handled
}
distortion = VERDICT_DBL_MAX;
double shape_function[maxTotalNumberGaussPoints][maxNumberNodes];
double dndy1[maxTotalNumberGaussPoints][maxNumberNodes];
double dndy2[maxTotalNumberGaussPoints][maxNumberNodes];
double weight[maxTotalNumberGaussPoints];
// create an object of GaussIntegration
int number_dims = 2;
int is_tri = 1;
GaussIntegration gint{};
gint.initialize(number_of_gauss_points, num_nodes, number_dims, is_tri);
gint.calculate_shape_function_2d_tri();
gint.get_shape_func(shape_function[0], dndy1[0], dndy2[0], weight);
// calculate element area
int ife, ja;
for (ife = 0; ife < total_number_of_gauss_points; ife++)
{
aa.set(0.0, 0.0, 0.0);
bb.set(0.0, 0.0, 0.0);
for (ja = 0; ja < num_nodes; ja++)
{
xin.set(coordinates[ja][0], coordinates[ja][1], coordinates[ja][2]);
aa += dndy1[ife][ja] * xin;
bb += dndy2[ife][ja] * xin;
}
normal_at_point = aa * bb;
double jacobian = normal_at_point.length();
element_area += weight[ife] * jacobian;
}
element_area *= 0.8660254;
double dndy1_at_node[maxNumberNodes][maxNumberNodes];
double dndy2_at_node[maxNumberNodes][maxNumberNodes];
gint.calculate_derivative_at_nodes_2d_tri(dndy1_at_node, dndy2_at_node);
VerdictVector normal_at_nodes[7];
// evaluate normal at nodes and distortion values at nodes
int jai = 0;
for (ja = 0; ja < num_nodes; ja++)
{
aa.set(0.0, 0.0, 0.0);
bb.set(0.0, 0.0, 0.0);
for (jai = 0; jai < num_nodes; jai++)
{
xin.set(coordinates[jai][0], coordinates[jai][1], coordinates[jai][2]);
aa += dndy1_at_node[ja][jai] * xin;
bb += dndy2_at_node[ja][jai] * xin;
}
normal_at_nodes[ja] = aa * bb;
normal_at_nodes[ja].normalize();
}
// determine if element is flat
bool flat_element = true;
double dot_product;
for (ja = 0; ja < num_nodes; ja++)
{
dot_product = normal_at_nodes[0] % normal_at_nodes[ja];
if (std::abs(dot_product) < 0.99)
{
flat_element = false;
break;
}
}
// take into consideration the thickness of the element
double thickness, thickness_gauss;
double distrt;
// get_tri_thickness(tri, element_area, thickness );
thickness = 0.001 * std::sqrt(element_area);
// set thickness gauss point location
double zl = 0.5773502691896;
if (flat_element)
{
zl = 0.0;
}
int no_gauss_pts_z = (flat_element) ? 1 : 2;
double thickness_z;
// loop on integration points
int igz;
for (ife = 0; ife < total_number_of_gauss_points; ife++)
{
// loop on the thickness direction gauss points
for (igz = 0; igz < no_gauss_pts_z; igz++)
{
zl = -zl;
thickness_z = zl * thickness / 2.0;
aa.set(0.0, 0.0, 0.0);
bb.set(0.0, 0.0, 0.0);
cc.set(0.0, 0.0, 0.0);
for (ja = 0; ja < num_nodes; ja++)
{
xin.set(coordinates[ja][0], coordinates[ja][1], coordinates[ja][2]);
xin += thickness_z * normal_at_nodes[ja];
aa += dndy1[ife][ja] * xin;
bb += dndy2[ife][ja] * xin;
thickness_gauss = shape_function[ife][ja] * thickness / 2.0;
cc += thickness_gauss * normal_at_nodes[ja];
}
normal_at_point = aa * bb;
distrt = cc % normal_at_point;
if (distrt < distortion)
{
distortion = distrt;
}
}
}
// loop through nodal points
for (ja = 0; ja < num_nodes; ja++)
{
for (igz = 0; igz < no_gauss_pts_z; igz++)
{
zl = -zl;
thickness_z = zl * thickness / 2.0;
aa.set(0.0, 0.0, 0.0);
bb.set(0.0, 0.0, 0.0);
cc.set(0.0, 0.0, 0.0);
for (jai = 0; jai < num_nodes; jai++)
{
xin.set(coordinates[jai][0], coordinates[jai][1], coordinates[jai][2]);
xin += thickness_z * normal_at_nodes[ja];
aa += dndy1_at_node[ja][jai] * xin;
bb += dndy2_at_node[ja][jai] * xin;
if (jai == ja)
{
thickness_gauss = thickness / 2.0;
}
else
{
thickness_gauss = 0.;
}
cc += thickness_gauss * normal_at_nodes[jai];
}
}
normal_at_point = aa * bb;
double sign_jacobian = (tri_normal % normal_at_point) > 0 ? 1. : -1.;
distrt = sign_jacobian * (cc % normal_at_point);
if (distrt < distortion)
{
distortion = distrt;
}
}
if (element_area * thickness != 0)
{
distortion *= 1. / (element_area * thickness);
}
else
{
distortion *= 1.;
}
if (distortion > 0)
{
return (double)std::min(distortion, VERDICT_DBL_MAX);
}
return (double)std::max(distortion, -VERDICT_DBL_MAX);
}
template <typename CoordsContainerType>
double tri_inradius(const CoordsContainerType coordinates)
{
double sp = 0.0;
VerdictVector sides[3];
for (int i = 0; i < 3; i++)
{
int j = (i + 1) % 3;
sides[i].set(coordinates[j][0] - coordinates[i][0], coordinates[j][1] - coordinates[i][1],
coordinates[j][2] - coordinates[i][2]);
sp += sides[i].length();
}
sp /= 2.0;
VerdictVector cross = sides[1] * sides[0];
double area = cross.length() / 2.0;
double ir = area / sp;
return ir;
}
template <typename CoordsContainerType>
double tri6_min_inradius(const CoordsContainerType coordinates, const int dimension)
{
static int SUBTRI_NODES[4][3] = { { 0, 3, 5 }, { 3, 1, 4 }, { 5, 4, 2 }, { 3, 4, 5 } };
double min_inrad = VERDICT_DBL_MAX;
for (int i = 0; i < 4; i++)
{
double subtri_coords[3][3];
for (int j = 0; j < 3; j++)
{
int idx = SUBTRI_NODES[i][j];
subtri_coords[j][0] = coordinates[idx][0];
subtri_coords[j][1] = coordinates[idx][1];
subtri_coords[j][2] = dimension == 2 ? 0.0 : coordinates[idx][2];
}
double subtri_inrad = tri_inradius(subtri_coords);
if (subtri_inrad < min_inrad)
{
min_inrad = subtri_inrad;
}
}
return min_inrad;
}
template <typename CoordsContainerType>
double calculate_tri3_outer_radius(const CoordsContainerType coordinates, const int dimension)
{
double sp = 0.0;
VerdictVector sides[3];
double slen[3];
for (int i = 0; i < 3; i++)
{
int j = (i + 1) % 3;
const VerdictVector thisSide{coordinates[i], coordinates[j], dimension};