-
Notifications
You must be signed in to change notification settings - Fork 13
/
otm_adapt.cpp
364 lines (348 loc) · 15 KB
/
otm_adapt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#include <hpc_array.hpp>
#include <hpc_array_vector.hpp>
#include <hpc_dimensional.hpp>
#include <hpc_execution.hpp>
#include <hpc_numeric.hpp>
#include <hpc_quaternion.hpp>
#include <hpc_vector.hpp>
#include <hpc_vector3.hpp>
#include <iostream>
#include <lgr_adapt_util.hpp>
#include <lgr_input.hpp>
#include <lgr_mesh_indices.hpp>
#include <lgr_state.hpp>
#include <otm_adapt.hpp>
#include <otm_adapt_util.hpp>
#include <otm_distance_util.hpp>
#include <otm_meshless.hpp>
#include <otm_search.hpp>
namespace lgr {
void
polar_lie_decompose(
hpc::device_array_vector<hpc::matrix3x3<double>, point_index> const& F,
hpc::device_array_vector<hpc::vector3<double>, point_index>& r,
hpc::device_array_vector<hpc::matrix3x3<double>, point_index>& u,
hpc::counting_range<point_index> const& source_range)
{
auto const points_to_F = F.cbegin();
auto const index_to_r = r.begin();
auto const index_to_u = u.begin();
auto const point_offset = *(source_range.begin());
auto polar_lie = [=] HPC_DEVICE(point_index const point) {
auto const index = point - point_offset;
auto const F = points_to_F[point].load();
auto const R = hpc::polar_rotation(F);
auto const U = hpc::symm(hpc::transpose(R) * F);
auto const rotation_vector = hpc::rotation_vector_from_rotation_tensor(R);
auto const log_stretch = hpc::log(U);
index_to_r[index] = rotation_vector;
index_to_u[index] = log_stretch;
};
hpc::for_each(hpc::device_policy(), source_range, polar_lie);
align_rotation_vectors(r);
}
void
otm_populate_new_nodes(
state& s,
node_index begin_src,
node_index end_src,
node_index begin_target,
node_index end_target)
{
hpc::counting_range<node_index> source_range(begin_src, end_src);
hpc::counting_range<node_index> target_range(begin_target, end_target);
hpc::device_vector<hpc::basis_value<double>, node_index> NZ(source_range.size());
auto const nodes_to_x = s.x.cbegin();
auto const nodes_to_u = s.u.begin();
auto const nodes_to_v = s.v.begin();
auto const index_to_NZ = NZ.begin();
auto const eps = s.maxent_desired_tolerance;
auto const beta = s.otm_beta;
auto maxent_interpolator = [=] HPC_DEVICE(node_index const node) {
auto const target = nodes_to_x[node].load();
auto converged = false;
hpc::basis_gradient<double> mu(0.0, 0.0, 0.0);
using jacobian = hpc::matrix3x3<hpc::quantity<double, hpc::area_dimension>>;
auto J = jacobian::zero();
auto iter = 0;
auto const max_iter = 16;
while (converged == false) {
HPC_ASSERT(iter < max_iter, "Exceeded maximum iterations");
hpc::position<double> R(0.0, 0.0, 0.0);
auto dRdmu = jacobian::zero();
for (auto&& source_node : source_range) {
auto const r = nodes_to_x[source_node].load() - target;
auto const rr = hpc::inner_product(r, r);
auto const mur = hpc::inner_product(mu, r);
auto const boltzmann_factor = std::exp(-mur - beta * rr);
R += r * boltzmann_factor;
dRdmu -= boltzmann_factor * hpc::outer_product(r, r);
}
auto const dmu = -hpc::solve_full_pivot(dRdmu, R);
mu += dmu;
auto const nmu = hpc::norm(mu);
auto const ndmu = hpc::norm(dmu);
auto const error = nmu > hpc::machine_epsilon<double>() ? ndmu / nmu : ndmu;
converged = (error <= eps);
J = dRdmu;
++iter;
}
auto Z = 0.0;
auto i = 0;
for (auto&& source_node : source_range) {
auto const r = nodes_to_x[source_node].load() - target;
auto const rr = hpc::inner_product(r, r);
auto const mur = hpc::inner_product(mu, r);
auto const boltzmann_factor = std::exp(-mur - beta * rr);
Z += boltzmann_factor;
index_to_NZ[i] = boltzmann_factor;
++i;
}
i = 0;
auto node_u = hpc::displacement<double>::zero();
auto node_v = hpc::velocity<double>::zero();
for (auto&& source_node : source_range) {
auto const u = nodes_to_u[source_node].load();
auto const v = nodes_to_v[source_node].load();
auto const N = index_to_NZ[i] / Z;
node_u += N * u;
node_v += N * v;
++i;
}
nodes_to_u[node] = node_u;
nodes_to_v[node] = node_v;
};
hpc::for_each(hpc::device_policy(), target_range, maxent_interpolator);
}
void
otm_populate_new_points(
state& s,
point_index begin_src,
point_index end_src,
point_index begin_target,
point_index end_target)
{
hpc::counting_range<point_index> source_range(begin_src, end_src);
hpc::counting_range<point_index> target_range(begin_target, end_target);
auto const source_size = source_range.size();
hpc::device_vector<hpc::basis_value<double>, point_index> NZ(source_size);
hpc::device_array_vector<hpc::vector3<double>, point_index> r(source_size);
hpc::device_array_vector<hpc::matrix3x3<double>, point_index> u(source_size);
hpc::device_array_vector<hpc::vector3<double>, point_index> rp(source_size);
hpc::device_array_vector<hpc::matrix3x3<double>, point_index> up(source_size);
auto const points_to_xp = s.xp.cbegin();
auto const points_to_K = s.K.begin();
auto const points_to_G = s.G.begin();
auto const points_to_rho = s.rho.begin();
auto const points_to_ep = s.ep.begin();
auto const points_to_b = s.b.begin();
auto const points_to_V = s.V.begin();
auto const points_to_F = s.F_total.begin();
polar_lie_decompose(s.F_total, r, u, source_range);
auto const points_to_Fp = s.Fp_total.begin();
polar_lie_decompose(s.Fp_total, rp, up, source_range);
auto const index_to_NZ = NZ.begin();
auto const index_to_r = r.cbegin();
auto const index_to_u = u.cbegin();
auto const index_to_rp = rp.cbegin();
auto const index_to_up = up.cbegin();
auto const eps = s.maxent_desired_tolerance;
auto const beta = s.otm_beta;
auto maxent_interpolator = [=] HPC_DEVICE(point_index const point) {
auto const target = points_to_xp[point].load();
auto converged = false;
hpc::basis_gradient<double> mu(0.0, 0.0, 0.0);
using jacobian = hpc::matrix3x3<hpc::quantity<double, hpc::area_dimension>>;
auto J = jacobian::zero();
auto iter = 0;
auto const max_iter = 16;
while (converged == false) {
HPC_ASSERT(iter < max_iter, "Exceeded maximum iterations");
hpc::position<double> R(0.0, 0.0, 0.0);
auto dRdmu = jacobian::zero();
for (auto&& source_point : source_range) {
auto const r = points_to_xp[source_point].load() - target;
auto const rr = hpc::inner_product(r, r);
auto const mur = hpc::inner_product(mu, r);
auto const boltzmann_factor = std::exp(-mur - beta * rr);
R += r * boltzmann_factor;
dRdmu -= boltzmann_factor * hpc::outer_product(r, r);
}
auto const dmu = -hpc::solve_full_pivot(dRdmu, R);
mu += dmu;
auto const nmu = hpc::norm(mu);
auto const ndmu = hpc::norm(dmu);
auto const error = nmu > hpc::machine_epsilon<double>() ? ndmu / nmu : ndmu;
converged = (error <= eps);
J = dRdmu;
++iter;
}
auto Z = 0.0;
auto i = 0;
for (auto&& source_point : source_range) {
auto const r = points_to_xp[source_point].load() - target;
auto const rr = hpc::inner_product(r, r);
auto const mur = hpc::inner_product(mu, r);
auto const boltzmann_factor = std::exp(-mur - beta * rr);
Z += boltzmann_factor;
index_to_NZ[i] = boltzmann_factor;
++i;
}
i = 0;
auto point_K = hpc::pressure<double>(0.0);
auto point_G = hpc::pressure<double>(0.0);
auto point_rho = hpc::density<double>(0.0);
auto point_ep = hpc::strain<double>(0.0);
auto point_b = hpc::acceleration<double>::zero();
auto point_V = hpc::volume<double>(0.0);
auto index_r = hpc::vector3<double>::zero();
auto index_u = hpc::matrix3x3<double>::zero();
auto index_rp = hpc::vector3<double>::zero();
auto index_up = hpc::matrix3x3<double>::zero();
for (auto&& source_point : source_range) {
auto const K = points_to_K[source_point];
auto const G = points_to_G[source_point];
auto const rho = points_to_rho[source_point];
auto const ep = points_to_ep[source_point];
auto const b = points_to_b[source_point].load();
auto const N = index_to_NZ[i] / Z;
auto const dV = points_to_V[source_point] * N / (1.0 + N);
auto const rotation_vector = index_to_r[i].load();
auto const log_stretch = index_to_u[i].load();
auto const rotation_vector_plastic = index_to_rp[i].load();
auto const log_stretch_plastic = index_to_up[i].load();
point_K += N * K;
point_G += N * G;
point_rho += N * rho;
point_ep += N * ep;
point_b += N * b;
point_V += dV;
points_to_V[source_point] -= dV;
index_r += N * rotation_vector;
index_u += N * log_stretch;
index_rp += N * rotation_vector_plastic;
index_up += N * log_stretch_plastic;
++i;
}
points_to_K[point] = point_K;
points_to_G[point] = point_G;
points_to_rho[point] = point_rho;
points_to_ep[point] = point_ep;
points_to_b[point] = point_b;
points_to_V[point] = point_V;
auto const R = hpc::rotation_tensor_from_rotation_vector(index_r);
auto const U = hpc::exp(index_u);
auto const def_grad = R * U;
points_to_F[point] = def_grad;
auto const Rp = hpc::rotation_tensor_from_rotation_vector(index_rp);
auto const Up = hpc::exp(index_up);
auto const def_grad_plastic = Rp * Up;
points_to_Fp[point] = def_grad_plastic;
};
hpc::for_each(hpc::device_policy(), target_range, maxent_interpolator);
}
otm_adapt_state::otm_adapt_state(state const& s)
: node_criteria(s.nodes.size()),
point_criteria(s.points.size()),
other_node(s.nodes.size()),
other_point(s.points.size()),
node_op(s.nodes.size()),
point_op(s.points.size()),
point_counts(s.points.size()),
node_counts(s.nodes.size()),
old_points_to_new_points(s.points.size() + point_index(1)),
old_nodes_to_new_nodes(s.nodes.size() + node_index(1)),
new_points_to_old_points(),
new_nodes_to_old_nodes(),
new_point_nodes_to_nodes(),
new_points_are_same(),
new_nodes_are_same(),
interpolate_from_nodes(),
interpolate_from_points(),
new_points(point_index(0)),
new_nodes(node_index(0))
{
}
namespace {
template <typename Index>
void
resize_and_project_adapt_data(
const hpc::counting_range<Index>& old_range,
const hpc::device_vector<Index, Index>& new_counts,
hpc::counting_range<Index>& new_range,
hpc::device_vector<Index, Index>& old_to_new,
hpc::device_vector<bool, Index>& new_are_same,
hpc::device_array_vector<hpc::array<Index, 2, int>, Index>& interpolate_from,
hpc::device_vector<Index, Index>& new_to_old)
{
auto const num_new = hpc::reduce(hpc::device_policy(), new_counts, Index(0));
hpc::offset_scan(hpc::device_policy(), new_counts, old_to_new);
new_range.resize(num_new);
new_to_old.resize(num_new);
new_are_same.resize(num_new);
interpolate_from.resize(num_new);
project(old_range, old_to_new, new_to_old);
}
} // anonymous namespace
bool
otm_adapt(const input& in, state& s)
{
otm_adapt_state a(s);
evaluate_node_adapt(s, a, in.max_node_neighbor_distance);
evaluate_point_adapt(s, a, in.max_point_neighbor_distance);
choose_node_adapt(s, a);
choose_point_adapt(s, a);
auto const num_chosen_nodes = get_num_chosen_for_adapt(a.node_op);
auto const num_chosen_points = get_num_chosen_for_adapt(a.point_op);
if (num_chosen_nodes == 0 && num_chosen_points == 0) return false;
if (in.output_to_command_line) {
std::cout << "adapting " << num_chosen_nodes << " nodes and " << num_chosen_points << " points" << std::endl;
}
resize_and_project_adapt_data(
s.nodes,
a.node_counts,
a.new_nodes,
a.old_nodes_to_new_nodes,
a.new_nodes_are_same,
a.interpolate_from_nodes,
a.new_nodes_to_old_nodes);
resize_and_project_adapt_data(
s.points,
a.point_counts,
a.new_points,
a.old_points_to_new_points,
a.new_points_are_same,
a.interpolate_from_points,
a.new_points_to_old_points);
apply_node_adapt(s, a);
apply_point_adapt(s, a);
interpolate_nodal_data(a, s.x);
interpolate_nodal_data(a, s.u);
interpolate_nodal_data(a, s.v);
interpolate_point_data(a, s.xp);
interpolate_point_data(a, s.h_otm);
interpolate_point_data(a, s.K);
interpolate_point_data(a, s.G);
interpolate_point_data(a, s.rho);
if (s.ep.size() > 0) interpolate_point_data(a, s.ep);
interpolate_point_data(a, s.b);
lie_interpolate_point_data(a, s.F_total);
if (s.Fp_total.size() > 0) lie_interpolate_point_data(a, s.Fp_total);
distribute_point_data(a, s.V);
s.nodes = a.new_nodes;
s.points = a.new_points;
s.nearest_node_neighbor.resize(s.nodes.size());
s.nearest_node_neighbor_dist.resize(s.nodes.size());
s.nearest_point_neighbor.resize(s.points.size());
s.nearest_point_neighbor_dist.resize(s.points.size());
search::do_otm_iterative_point_support_search(s, in.minimum_support_size);
otm_update_neighbor_distances(s);
otm_allocate_state(in, s);
otm_set_beta(in.otm_gamma, s);
otm_update_shape_functions(s);
for (auto material : in.materials) {
otm_update_material_state(in, s, material);
}
return true;
}
} // namespace lgr