Skip to content

Latest commit

 

History

History
72 lines (50 loc) · 1.46 KB

README.md

File metadata and controls

72 lines (50 loc) · 1.46 KB

Object Detection using YOLOv8 and Tensorflow.js

love tensorflow.js


Object Detection application right in your browser. Serving YOLOv8 in browser using tensorflow.js with webgl backend.

Setup

git clone https://github.com/Hyuto/yolov8-tfjs.git
cd yolov8-tfjs
yarn install #Install dependencies

Scripts

yarn start # Start dev server
yarn build # Build for productions

Model

YOLOv8n model converted to tensorflow.js.

used model : yolov8n
size       : 13 Mb

Use another model

Use another YOLOv8 model.

  1. Export YOLOv8 model to tfjs format. Read more on the official documentation

    from ultralytics import YOLO
    
    # Load a model
    model = YOLO("yolov8n.pt")  # load an official model
    
    # Export the model
    model.export(format="tfjs")
  2. Copy yolov8*_web_model to ./public

  3. Update modelName in App.jsx to new model name

    ...
    // model configs
    const modelName = "yolov8*"; // change to new model name
    ...
  4. Done! 😊

Note: Custom Trained YOLOv8 Models

Please update src/utils/labels.json with your new classes.

Reference