-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_lib_v2_test.py
104 lines (81 loc) · 3.3 KB
/
model_lib_v2_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object detection model library."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
from object_detection import model_hparams
from object_detection import model_lib_v2
from object_detection.utils import config_util
# Model for test. Current options are:
# 'ssd_mobilenet_v2_pets_keras'
MODEL_NAME_FOR_TEST = 'ssd_mobilenet_v2_pets_keras'
def _get_data_path():
"""Returns an absolute path to TFRecord file."""
return os.path.join(tf.resource_loader.get_data_files_path(), 'test_data',
'pets_examples.record')
def get_pipeline_config_path(model_name):
"""Returns path to the local pipeline config file."""
return os.path.join(tf.resource_loader.get_data_files_path(), 'samples',
'configs', model_name + '.config')
def _get_labelmap_path():
"""Returns an absolute path to label map file."""
return os.path.join(tf.resource_loader.get_data_files_path(), 'data',
'pet_label_map.pbtxt')
def _get_config_kwarg_overrides():
"""Returns overrides to the configs that insert the correct local paths."""
data_path = _get_data_path()
label_map_path = _get_labelmap_path()
return {
'train_input_path': data_path,
'eval_input_path': data_path,
'label_map_path': label_map_path
}
def _get_configs_for_model(model_name):
"""Returns configurations for model."""
filename = get_pipeline_config_path(model_name)
configs = config_util.get_configs_from_pipeline_file(filename)
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=_get_config_kwarg_overrides())
return configs
class ModelLibTest(tf.test.TestCase):
@classmethod
def setUpClass(cls):
tf.keras.backend.clear_session()
def test_train_loop_then_eval_loop(self):
"""Tests that Estimator and input function are constructed correctly."""
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
config_kwarg_overrides = _get_config_kwarg_overrides()
model_dir = tf.test.get_temp_dir()
train_steps = 2
model_lib_v2.train_loop(
hparams,
pipeline_config_path,
model_dir=model_dir,
train_steps=train_steps,
checkpoint_every_n=1,
**config_kwarg_overrides)
model_lib_v2.eval_continuously(
hparams,
pipeline_config_path,
model_dir=model_dir,
checkpoint_dir=model_dir,
train_steps=train_steps,
wait_interval=10,
**config_kwarg_overrides)