-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcfos_regressions.py
338 lines (287 loc) · 15.9 KB
/
cfos_regressions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# combine cfos data with PL projection patterns
from allensdk.core.mouse_connectivity_cache import MouseConnectivityCache
from allensdk.core.reference_space_cache import ReferenceSpaceCache
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
from scipy.stats import ttest_ind
from statsmodels.stats import multitest
import tifffile as tf
from sklearn.cross_decomposition import PLSRegression
from tqdm import tqdm
warnings.filterwarnings('ignore')
cfos_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\get_atlas_proj_density\data\Cohort6_cfos_6_22_21_combined_results - all_density_excl.csv"
combined_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\get_atlas_proj_density\data\cfos_projection_combined.csv"
combined_pl_proj_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\get_atlas_proj_density\data\cfos_projection_combined_plProj.csv"
region_list_path = r"\\PC300694.med.cornell.edu\homes\SmartSPIM_Data\2022_01_19\20220119_16_47_57_SJ0612_destriped_DONE\full_brain_regions_LR.csv"
anno25_path = r"\\PC300694.med.cornell.edu\homes\SmartSPIM_Data\2022_01_19\20220119_16_47_57_SJ0612_destriped_DONE\annotation_25_full_transverse_LR.tiff"
pl_proj_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\get_atlas_proj_density\data\cfos_projection_combined_plProj_withCentroids.csv"
exp_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\pls_regression\data\structure_unionizes_all_mouse_expression_density.csv"
exp_rep_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\pls_regression\data\structure_unionizes_all_mouse_expression_density_rep.csv"
expr_for_r_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\expression_for_r.csv"
cfos_for_r_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\cfos_for_r.csv"
def get_atlas_data():
mcc = MouseConnectivityCache(manifest_file='connectivity/mouse_connectivity_manifest.json')
reference_space_key = 'annotation/ccf_2017'
resolution = 25
rspc = ReferenceSpaceCache(resolution, reference_space_key, manifest='manifest.json')
rsp = rspc.get_reference_space()
# all_experiments = mcc.get_experiments(dataframe=True)
structure_tree = mcc.get_structure_tree()
name_map = structure_tree.get_name_map()
return mcc, rsp, structure_tree, name_map
def get_cfos_data(cfos_path):
cfos = pd.read_csv(cfos_path)
return cfos
def get_pl_proj(structure_tree, mcc):
pl = structure_tree.get_structures_by_acronym(['PL'])[0]
pl_experiment = mcc.get_experiments(
cre=False,
injection_structure_ids=[pl['id']],
)
pl_exp_ids = [i['id'] for i in pl_experiment]
structure_unionizes = mcc.get_structure_unionizes(
[pl_exp_ids[0]],
is_injection=False,
hemisphere_ids=[1, 2],
include_descendants=True).reset_index(drop=True)
proj = structure_unionizes.sort_values(
by=["projection_energy"],
ascending=True).reset_index(drop=True)
return proj
def set_structure_names(structure_tree, proj):
structure_names = pd.DataFrame(structure_tree.nodes(proj.structure_id)).reset_index()
proj["name"] = structure_names.name
proj["acronym"] = structure_names.acronym
hemi_dict = {1: "right ", 2:"left "} # this is flipped relative to the true mappings. This is because our mice have left side injections and the Allen Atlas data is for right side
name_LR = [hemi_dict[i] for i in proj["hemisphere_id"]] + proj["name"]
proj["name"] = name_LR
proj["hemi_LR"] = [hemi_dict[i] for i in proj["hemisphere_id"]]
return proj
def check_for_data(path, last_column):
combined_exists = os.path.exists(path)
if combined_exists:
combined_head = pd.read_csv(path, index_col=0, nrows=0).columns.tolist()
if last_column in combined_head:
return True
else:
return False
else:
return False
def combine_cfos_and_projections(cfos, proj):
cfos_not_in_proj = cfos.name[np.logical_not(cfos.name.isin(proj.name))]
proj_not_in_cfos = proj.name[np.logical_not(proj.name.isin(cfos.name))]
combined = cfos.merge(proj, how="inner", on = "name")
print(f"Creating combined dataset.")
print(f"Lost regions from cfos data are: {cfos_not_in_proj.values}")
print(f"Lost regions from projection data are: {proj_not_in_cfos.values}")
return combined
def append_statistics(combined, combined_path):
t_stats = []
p_vals = []
for row in combined.iterrows():
t_stat, p_val = ttest_ind(
[
row[1].ChR2_SJ0619,
row[1].ChR2_SJ0602,
row[1].ChR2_SJ0603,
row[1].ChR2_SJ0605,
row[1].ChR2_SJ0612
],
[
row[1].YFP_SJ0601,
row[1].YFP_SJ0604,
row[1].YFP_SJ0606,
row[1].YFP_SJ0610,
row[1].YFP_SJ0613,
row[1].YFP_SJ0615
],
axis=0,
equal_var=True,
nan_policy='propagate',
permutations=None,
random_state=None,
alternative='two-sided',
trim=0)
t_stats.append(t_stat)
p_vals.append(p_val)
p_vals = np.nan_to_num(p_vals, nan=1)
t_stats = np.nan_to_num(t_stats, nan=0)
combined["t_stat"] = t_stats
combined["p_val"] = p_vals
corrected = multitest.multipletests(p_vals, alpha=0.05, method='fdr_bh', is_sorted=False, returnsorted=False)
combined["p_val_corrected"] = corrected[1]
combined.to_csv(combined_path)
return combined
def plot_pvals(combined):
plt.plot(combined["p_val"])
plt.plot(combined["p_val_corrected"])
plt.show()
def restrict_to_pl_proj(combined):
combined_pl_proj = combined[(combined["projection_density"] > 0)]
combined_pl_proj = combined_pl_proj[(combined_pl_proj["projection_intensity"] > 0)]
combined_pl_proj = combined_pl_proj[(combined_pl_proj["projection_energy"] > 0)]
return combined_pl_proj
def log_transform(proj):
proj["pd_log"] = np.log(proj["projection_density"]+0.0000001)
proj["pe_log"] = np.log(proj["projection_energy"]+0.0000001)
proj["pi_log"] = np.log(proj["projection_intensity"]+0.0000001)
return combined
def get_life_canvas_data(region_list_path, anno25_path):
region_list = pd.read_csv(region_list_path)
# parent_child_dict = region_list.set_index("parent_structure_id")["id"].to_dict()
child_parent_dict = region_list.set_index("id")["parent_structure_id"].to_dict()
region_list["g_parent_structure_id"] = region_list.parent_structure_id.map(child_parent_dict).fillna(-1).astype(int)
region_list["g_g_parent_structure_id"] = region_list.g_parent_structure_id.map(child_parent_dict).fillna(-1).astype(int)
region_list["g_g_g_parent_structure_id"] = region_list.g_g_parent_structure_id.map(child_parent_dict).fillna(-1).astype(int)
anno25 = tf.imread(anno25_path)
return region_list, anno25
def get_centroids(proj, rsp, name_map):
proj["centroid_x"] = ""
proj["centroid_y"] = ""
proj["centroid_z"] = ""
print("Finding centroids")
for row in tqdm(proj.iterrows()):
i = row[0]
id = row[1].structure_id
hemi = row[1].hemi_LR
mask = rsp.make_structure_mask([id])
side_left = hemi == "left"
if side_left:
mask_left = mask[:, :, 228:456]
centroid_left = [np.nanmean(x_value) for x_value in np.where(mask_left)]
proj["centroid_x"].iloc[i] = centroid_left[0]
proj["centroid_y"].iloc[i] = centroid_left[1]
proj["centroid_z"].iloc[i] = centroid_left[2]
else:
mask_right = mask[:, :, 0:228]
centroid_right = [np.nanmean(x_value) for x_value in np.where(mask_right)]
proj["centroid_x"].iloc[i] = centroid_right[0]
proj["centroid_y"].iloc[i] = centroid_right[1]
proj["centroid_z"].iloc[i] = centroid_right[2]
print(f"{np.round(((i+1)/proj.shape[0])*100,2)}% done")
return proj
# function to get expression data?
def get_expression_data(exp_path, keep_all_genes):
exp = pd.read_csv(exp_path)
exp = exp.groupby(["gene_id", "acronym"]).agg({"expression_density": lambda x: np.nanmean(x)}).reset_index()
exp["ed_dm_scale"] = (exp["expression_density"] - np.nanmean(exp["expression_density"]))
exp["ed_dm_scale"] = exp["ed_dm_scale"]/np.std(exp["ed_dm_scale"])
exp = exp.pivot(index="acronym", columns="gene_id", values="ed_dm_scale")
# restrict to genes with full coverage, try this with the inverse: keep only brain regions with full coverage
if keep_all_genes:
print("Keeping all genes, brain regions will be lost")
lost_data = exp.index[np.logical_not(np.sum(exp.isna(),axis=1) == 0)]
exp = exp[(np.sum(exp.isna(),axis=1) == 0)]
else:
print("Keep all brain regions, genes will be lost")
lost_data = exp.columns[np.logical_not(np.sum(exp.T.isna(),axis=1) == 0)]
exp = exp.T[(np.sum(exp.T.isna(),axis=1) == 0)].T
exp_idx = exp.index
exp_idx_rep = np.repeat(exp_idx, 2) + np.tile(["-L","-R"], exp.shape[0])
exp_col = exp.columns
exp_rep = pd.DataFrame(np.repeat(exp.values,2,axis=0))
exp_rep.index = exp_idx_rep
exp_rep.columns = exp_col
return exp_rep, lost_data
def get_dist_to_pl(pl_proj):
pl_x = pl_proj["centroid_x"][pl_proj["name"] == 'left Prelimbic area'].values[0]
pl_y = pl_proj["centroid_y"][pl_proj["name"] == 'left Prelimbic area'].values[0]
pl_z = pl_proj["centroid_z"][pl_proj["name"] == 'left Prelimbic area'].values[0]
pl_proj["dist_to_pl"] = ""
for row in pl_proj.iterrows():
i = row[0]
pl_proj["dist_to_pl"].iloc[i] = np.sqrt(
(
(row[1].centroid_x - pl_x)**2 + (row[1].centroid_y - pl_y)**2 + (row[1].centroid_z - pl_z)**2
)
)
return pl_proj
def match_cfos_to_exp(pl_proj, exp):
pl_proj = pl_proj.set_index("acronym_x") # note: should merge on name and acronym so that acronym isn't duplicated
if (exp.index.name != "acronym"):
print("Error: expression data is missing acronym index")
return ""
else:
pl_proj_sub = pl_proj[pl_proj.index.isin(exp.index)]
exp_sub = exp[exp.index.isin(pl_proj_sub.index)]
pl_proj_lost_regions = pl_proj.index[np.logical_not(pl_proj.index.isin(exp.index))]
exp_lost_regions = exp.index[np.logical_not(exp.index.isin(pl_proj.index))]
pl_proj_sub_sort = pl_proj_sub.sort_index()
exp_sub_sort = exp_sub.sort_index()
print(f"Regions in projection/cfos data missing from expression data: {pl_proj_lost_regions}")
print(f"Regions in expression data missing from projection/cfos data: {exp_lost_regions}")
return pl_proj_sub_sort, exp_sub_sort, pl_proj_lost_regions, exp_lost_regions
# Plan: generate random permutation matrix.
# Alex creates a range of values to permute over.
# The values range over the number of data rows in the expression matrix
bootstrap_count = 10000
temp_range = exp.shape[0]
perm_mat_rand = np.zeros((exp.shape[0],bootstrap_count))
for i in np.arange(bootstrap_count):
perm_mat_rand[:,i] = np.random.permutation(temp_range)
# null model using random permutation of rows
for i in np.arange(bootstrap_count):
idx= perm_mat_rand[:,i]
X =
pls_mdl = PLSRegression(n_components=1, scale=False)
pls_mdl.fit()
def main():
if check_for_data(pl_proj_path, "dist_to_pl"):
pl_proj = pd.read_csv(pl_proj_path)
else:
mcc, rsp, structure_tree, name_map = get_atlas_data()
cfos = get_cfos_data(cfos_path)
proj = get_pl_proj(structure_tree, mcc)
proj = set_structure_names(structure_tree, proj)
if check_for_data(combined_path, "p_val_corrected"):
combined = pd.read_csv(combined_path)
else:
combined = combine_cfos_and_projections(cfos, proj)
combined = append_statistics(combined, combined_path)
pl_proj = restrict_to_pl_proj(combined)
pl_proj = log_transform(pl_proj)
# region_list, anno25 = get_life_canvas_data(region_list_path, anno25_path)
pl_proj = get_centroids(pl_proj, rsp, name_map)
pl_proj = get_dist_to_pl(pl_proj)
pl_proj.to_csv(pl_proj_path)
exp_kept_regions, lost_genes = get_expression_data(exp_path, keep_all_genes=False)
exp_kept_genes, lost_regions = get_expression_data(exp_path, keep_all_genes=True)
proj_kept_regions, exp_kept_regions, cfos_lost_regions, expr_lost_regions = match_cfos_to_exp(pl_proj, exp_kept_regions) # why are we missing so many regions (~400)
proj_kept_genes, exp_kept_genes, cfos_lost_regions, expr_lost_regions = match_cfos_to_exp(pl_proj, exp_kept_genes)
proj_kept_regions_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\cfos_kept_regions.csv"
exp_kept_regions_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\expr_kept_regions.csv"
lost_genes_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\lost_genes_from_kept_regions.csv"
proj_kept_genes_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\cfos_kept_genes.csv"
exp_kept_genes_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\expr_kept_genes.csv"
lost_regions_path = r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\lost_regions_from_kept_genes.csv"
proj_kept_regions.to_csv(proj_kept_regions_path)
exp_kept_regions.to_csv(exp_kept_regions_path)
pd.Series(lost_genes).to_csv(lost_genes_path)
proj_kept_genes.to_csv(proj_kept_genes_path)
exp_kept_genes.to_csv(exp_kept_genes_path)
pd.Series(lost_regions).to_csv(lost_regions_path)
# map gene symbol onto gene id
gene_list = pd.read_csv(r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\pls_regression\data\structure_unionizes_all_mouse_expression.csv")
gene_rank_list = pd.read_csv(r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\ranked_gene_list_noLW.csv")
gene_id_symbol_dict = gene_list.set_index("gene_id")["gene_symbol"].to_dict()
gene_symb_name_dict = gene_list.set_index("gene_symbol")["gene_name"].to_dict()
gene_rank_list["gene_symbol"] = gene_rank_list["gene_id"].map(gene_id_symbol_dict)
gene_rank_list.to_csv(r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\ranked_gene_list_symbol_noLW.csv")
# described top loading
all_genes_ranked_id_lw = pd.read_csv(r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\kept_all_genes_matlab_gene_LW_ranklist.csv")
all_genes_ranked_id_lw["gene_symbol"] = all_genes_ranked_id_lw["gene_id"].map(gene_id_symbol_dict)
all_genes_ranked_id_lw["gene_name"] = all_genes_ranked_id_lw["gene_symbol"].map(gene_symb_name_dict)
all_genes_ranked_id_lw.to_csv(r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\kept_all_genes_matlab_gene_LW_ranklist.csv")
# all_genes_ranked_symbol = pd.read_csv(r"C:\Users\shane\Dropbox (ListonLab)\shane\python_projects\cfos_regressions\results\kept_all_genes_ranked_gene_symbol.csv")
# all_genes_ranked_symbol["gene_name"] = all_genes_ranked_symbol["gene_symbol"].map(gene_symb_name_dict)
# cfos within group correlations
cfos = pd.read_csv(pl_proj_path)
cfos.set_index("name", inplace=True)
yfp_animal_corr = cfos[['YFP_SJ0601', 'YFP_SJ0604', 'YFP_SJ0606', 'YFP_SJ0610', 'YFP_SJ0613', 'YFP_SJ0615']].corr()
chr2_animal_corr = cfos[['ChR2_SJ0619', 'ChR2_SJ0602', 'ChR2_SJ0603', 'ChR2_SJ0605', 'ChR2_SJ0612']].corr()
yfp_region_corr = cfos[['YFP_SJ0601', 'YFP_SJ0604', 'YFP_SJ0606', 'YFP_SJ0610', 'YFP_SJ0613', 'YFP_SJ0615']].T.corr()
chr2_region_corr = cfos[['ChR2_SJ0619', 'ChR2_SJ0602', 'ChR2_SJ0603', 'ChR2_SJ0605', 'ChR2_SJ0612']].T.corr()