-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsection2-02-real-world-example-refactored.py
293 lines (197 loc) · 10.2 KB
/
section2-02-real-world-example-refactored.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import glob
import os
import zipfile
import re # regular expression
import requests
import pandas as pd
# fixes display of dataframes in Python Console
pd.set_option('display.float_format', lambda x: f'{x:.5f}')
pd.set_option('display.max_columns', 500)
pd.set_option('display.max_rows', 500)
pd.set_option('display.width', 600)
current_directory = os.getcwd()
def extract_zip_contents(filepath):
zip_file_local_extract_path = filepath.replace(".zip", "")
# create directory for zip files
if os.path.exists(zip_file_local_extract_path):
print("Folder already Exists!")
else:
try:
z = zipfile.ZipFile(zip_file_local_extract_path)
z.extractall(zip_file_local_extract_path)
print("Extracting Contents: \t", zip_file_local_extract_path)
except:
print("Issue Extracting, Going to Skip :)")
return None
return zip_file_local_extract_path
def download_filings(start_year, end_year, output_directory):
quarters = ['q1', 'q2', 'q3', 'q4']
zip_filepaths = []
for year in range(start_year, end_year):
for quarter in quarters:
url = rf'https://www.sec.gov/files/dera/data/financial-statement-data-sets/{year}{quarter}.zip'
try:
# we can get the filename (basename) of the url using basename
basename = os.path.basename(url)
print(basename)
zip_file_local_filepath = os.path.join(output_directory, basename)
print(zip_file_local_filepath)
zip_filepaths.append(zip_file_local_filepath)
if not os.path.exists(zip_file_local_filepath):
print(f"Downloading: \t{url}")
r = requests.get(url)
if r.status_code == 200:
print(f"Download Complete")
with open(zip_file_local_filepath, 'wb') as fd:
fd.write(r.content)
else:
print("Got an Error Code!")
else:
print("It appears Zip File already exists", zip_file_local_filepath)
except Exception as E:
print("Error Downloading", url, E)
return zip_filepaths
def transform_data(numbers_filepath, submissions_filepath, df_sic_list, df_symbol_cik, metric="Revenues", form_type='10-'):
print("Transforming ", numbers_filepath)
df_numbers = pd.read_csv(numbers_filepath, delimiter="\t")
df_submissions = pd.read_csv(submissions_filepath, delimiter="\t")
# convert sic to string
df_submissions['sic'] = df_submissions['sic'].astype('Int64').astype('str')
df_submissions = df_submissions[['adsh', 'cik', 'name', 'sic', 'countryba', 'stprba', 'fye', 'form', 'period', 'filed', 'instance']]
df_symbol_cik['symbol'] = df_symbol_cik['symbol'].str.upper()
# create list of dataframe column names
submissions_columns = df_submissions.columns.tolist()
# going to merge two dataframes into one
df_submissions_symbols = pd.merge(df_submissions, df_symbol_cik)
# merge sic codes onto submission dataframe
df_submissions_symbols = pd.merge(df_submissions_symbols, df_sic_list, on="sic")
# we can drop columns by name using drop
df_submissions_symbols = df_submissions_symbols.drop(columns=['instance'])
new_submissions_columns = ["symbol", "industry_title"] + submissions_columns
df_submissions_symbols = df_submissions_symbols.reindex(columns=new_submissions_columns)
df_submissions_symbols = df_submissions_symbols[df_submissions_symbols['form'].str.contains(form_type, flags=re.IGNORECASE, regex=True)]
df_submission_numbers = pd.merge(df_numbers, df_submissions_symbols, left_on='adsh', right_on='adsh', how='inner')
new_column_order = ['cik',
'symbol',
'name',
'sic',
'industry_title',
'countryba',
'stprba',
'fye',
'form',
'period',
'filed',
'adsh',
'tag',
'version',
'coreg',
'ddate',
'qtrs',
'uom',
'value'
]
# reorder columns
df_submission_numbers = df_submission_numbers.reindex(columns=new_column_order)
# Group by: split-apply-combine
if metric:
df_values = df_submission_numbers[df_submission_numbers['tag'].isin([metric])]
else:
df_values = df_submission_numbers.copy()
df_values = df_values.dropna(subset=['value'])
# only show companies with 4 quarters (1 year) worth of data
df_values = df_values[df_values['qtrs'] == 4]
df_values = df_values[(df_values['uom'] == "USD") | (df_values['uom'] == "EUR")]
df_values = df_values.sort_values('ddate', ascending=True)
group = []
for (symbol, qtrs), df_group in df_values.groupby(["symbol", "qtrs"]):
df_group['pct_change'] = df_group['value'].pct_change()
group.append(df_group)
df_values_pct = pd.concat(group)
df_values_pct = df_values_pct.sort_values('ddate', ascending=False)
print("Done Transforming ", numbers_filepath)
return df_values_pct
def filter_ticker_list(df_submissions_symbols):
pycon_sponsors = [{'symbol': 'GOOG', 'name': 'ALPHABET INC.', 'sponsor_level': 'VISIONARY'},
{'symbol': 'AMZN', 'name': 'AMAZON COM INC', 'sponsor_level': 'SUSTAINABILITY'},
{'symbol': '#N/A', 'name': 'BLOOMBERG', 'sponsor_level': 'VISIONARY'},
{'symbol': 'COF', 'name': 'CAPITAL ONE FINANCIAL CORP', 'sponsor_level': 'MAINTAINING'},
{'symbol': 'GLW', 'name': 'CORNING INC', 'sponsor_level': 'MAINTAINING'},
{'symbol': 'ESTC', 'name': 'ELASTIC N.V.', 'sponsor_level': 'PARTNER'},
{'symbol': 'FB', 'name': 'FACEBOOK INC', 'sponsor_level': 'SUSTAINABILITY'},
{'symbol': '#N/A', 'name': 'HUAWEI TECHNOLOGIES', 'sponsor_level': 'SUSTAINABILITY'},
{'symbol': 'IBM', 'name': 'INTERNATIONAL BUSINESS MACHINES CORP', 'sponsor_level': 'CONTRIBUTING'},
{'symbol': 'JPM', 'name': 'JPMORGAN CHASE & CO', 'sponsor_level': 'SUPPORTING'},
{'symbol': 'MSFT', 'name': 'MICROSOFT CORP', 'sponsor_level': 'VISIONARY'},
{'symbol': 'NFLX', 'name': 'NETFLIX INC', 'sponsor_level': 'PARTNER'},
{'symbol': 'CRM', 'name': 'SALESFORCE.COM INC.', 'sponsor_level': 'SUSTAINABILITY'},
{'symbol': 'WORK', 'name': 'SLACK TECHNOLOGIES INC.', 'sponsor_level': 'MAINTAINING'}]
df_companies = pd.DataFrame(pycon_sponsors)
ticker_list_pycon_sponsors = df_companies['symbol'].tolist()
df_selected_submissions = df_submissions_symbols[df_submissions_symbols['symbol'].isin(ticker_list_pycon_sponsors)]
new_submissions_columns = ['cik',
'symbol',
'name',
'sic',
'industry_title',
'countryba',
'stprba',
'fye',
'form',
'period',
'filed',
'adsh'
]
df_selected_submissions = df_selected_submissions.reindex(columns=new_submissions_columns)
return df_selected_submissions
def main(start_year, end_year):
url = 'https://www.sec.gov/include/ticker.txt'
df_symbol_cik = pd.read_csv(url, delimiter="\t", names=['symbol', 'cik'])
# standard industrial classification
sic_url = r'https://www.sec.gov/info/edgar/siccodes.htm'
# we can extract table from html by passing in url
sics_tables = pd.read_html(sic_url)
df_sic_list = sics_tables[0]
# rename columns to lower, no spaces, and rename sic_code to sic
df_sic_list.columns = df_sic_list.columns.str.lower().str.replace(" ", "_").str.replace("sic_code", "sic")
# convert sic column to string
df_sic_list['sic'] = df_sic_list['sic'].astype('Int64').astype('str')
output_directory = os.path.join(current_directory, "zip-data")
# create directory for zip files
if os.path.exists(output_directory):
print("Folder already Exists!")
else:
print("Folder doesn't exist")
os.mkdir(output_directory)
print("Created Directory!")
zip_filepaths = download_filings(start_year, end_year, output_directory)
zip_folders = []
for zip_filepath in zip_filepaths:
zip_folder = extract_zip_contents(zip_filepath)
if zip_folder:
zip_folders.append(zip_folder)
# get list of all extracted files
files = glob.glob(output_directory + "\\*\\*.*")
num_files = [file for file in files if "num.txt" in file]
sub_files = [file for file in files if "sub.txt" in file]
pre_files = [file for file in files if "pre.txt" in file]
tag_files = [file for file in files if "tag.txt" in file]
readme_files = [file for file in files if "readme.htm" in file]
num_files.sort(reverse=True)
sub_files.sort(reverse=True)
if len(num_files) == len(sub_files):
sub_num_files = list(zip(sub_files, num_files))
filings = []
for sub_file, num_file in sub_num_files[1:5]:
df_companies_pct_chg = transform_data(num_file, sub_file, df_sic_list, df_symbol_cik, metric="Revenues", form_type='10-')
filings.append(df_companies_pct_chg)
df_all_filings = pd.concat(filings)
# df_all_filings = df_all_filings.dropna(subset=['pct_change'])
# df_all_filings = df_all_filings[df_all_filings['pct_change'] > 0]
#
# df_all_filings = df_all_filings.drop_duplicates(keep='first', subset=['cik']).sort_values('value', ascending=False)
df_all_filings.to_csv('all_filings.csv')
if __name__ == "__main__":
start_year = 2020
end_year = 2022
main(start_year, end_year)