@@ -10,15 +10,23 @@ use crate::type_::Type;
10
10
use crate :: type_of:: LayoutLlvmExt ;
11
11
use crate :: value:: Value ;
12
12
13
+ fn round_up_to_alignment < ' ll > (
14
+ bx : & mut Builder < ' _ , ' ll , ' _ > ,
15
+ mut value : & ' ll Value ,
16
+ align : Align ,
17
+ ) -> & ' ll Value {
18
+ value = bx. add ( value, bx. cx ( ) . const_i32 ( align. bytes ( ) as i32 - 1 ) ) ;
19
+ return bx. and ( value, bx. cx ( ) . const_i32 ( -( align. bytes ( ) as i32 ) ) ) ;
20
+ }
21
+
13
22
fn round_pointer_up_to_alignment < ' ll > (
14
23
bx : & mut Builder < ' _ , ' ll , ' _ > ,
15
24
addr : & ' ll Value ,
16
25
align : Align ,
17
26
ptr_ty : & ' ll Type ,
18
27
) -> & ' ll Value {
19
28
let mut ptr_as_int = bx. ptrtoint ( addr, bx. cx ( ) . type_isize ( ) ) ;
20
- ptr_as_int = bx. add ( ptr_as_int, bx. cx ( ) . const_i32 ( align. bytes ( ) as i32 - 1 ) ) ;
21
- ptr_as_int = bx. and ( ptr_as_int, bx. cx ( ) . const_i32 ( -( align. bytes ( ) as i32 ) ) ) ;
29
+ ptr_as_int = round_up_to_alignment ( bx, ptr_as_int, align) ;
22
30
bx. inttoptr ( ptr_as_int, ptr_ty)
23
31
}
24
32
@@ -270,6 +278,106 @@ fn emit_s390x_va_arg<'ll, 'tcx>(
270
278
bx. load ( val_type, val_addr, layout. align . abi )
271
279
}
272
280
281
+ fn emit_xtensa_va_arg < ' ll , ' tcx > (
282
+ bx : & mut Builder < ' _ , ' ll , ' tcx > ,
283
+ list : OperandRef < ' tcx , & ' ll Value > ,
284
+ target_ty : Ty < ' tcx > ,
285
+ ) -> & ' ll Value {
286
+ // Implementation of va_arg for Xtensa. There doesn't seem to be an authoritative source for
287
+ // this, other than "what GCC does".
288
+ //
289
+ // The va_list type has three fields:
290
+ // struct __va_list_tag {
291
+ // int32_t *va_stk; // Arguments passed on the stack
292
+ // int32_t *va_reg; // Arguments passed in registers, saved to memory by the prologue.
293
+ // int32_t va_ndx; // Offset into the arguments, in bytes
294
+ // };
295
+ //
296
+ // The first 24 bytes (equivalent to 6 registers) come from va_reg, the rest from va_stk.
297
+ // Thus if va_ndx is less than 24, the next va_arg *may* read from va_reg,
298
+ // otherwise it must come from va_stk.
299
+ //
300
+ // Primitive arguments are never split between registers and the stack. For example, if loading an 8 byte
301
+ // primitive value and va_ndx = 20, we instead bump the offset and read everything from va_stk.
302
+ let va_list_addr = list. immediate ( ) ;
303
+ // FIXME: handle multi-field structs that split across regsave/stack?
304
+ let layout = bx. cx . layout_of ( target_ty) ;
305
+ let from_stack = bx. append_sibling_block ( "va_arg.from_stack" ) ;
306
+ let from_regsave = bx. append_sibling_block ( "va_arg.from_regsave" ) ;
307
+ let end = bx. append_sibling_block ( "va_arg.end" ) ;
308
+
309
+ // (*va).va_ndx
310
+ let va_reg_offset = 4 ;
311
+ let va_ndx_offset = va_reg_offset + 4 ;
312
+ let offset_ptr =
313
+ bx. inbounds_gep ( bx. type_i8 ( ) , va_list_addr, & [ bx. cx . const_usize ( va_ndx_offset) ] ) ;
314
+
315
+ let offset = bx. load ( bx. type_i32 ( ) , offset_ptr, bx. tcx ( ) . data_layout . i32_align . abi ) ;
316
+ let offset = round_up_to_alignment ( bx, offset, layout. align . abi ) ;
317
+
318
+ let slot_size = layout. size . align_to ( Align :: from_bytes ( 4 ) . unwrap ( ) ) . bytes ( ) as i32 ;
319
+
320
+ // Update the offset in va_list, by adding the slot's size.
321
+ let offset_next = bx. add ( offset, bx. const_i32 ( slot_size) ) ;
322
+
323
+ // Figure out where to look for our value. We do that by checking the end of our slot (offset_next).
324
+ // If that is within the regsave area, then load from there. Otherwise load from the stack area.
325
+ let regsave_size = bx. const_i32 ( 24 ) ;
326
+ let use_regsave = bx. icmp ( IntPredicate :: IntULE , offset_next, regsave_size) ;
327
+ bx. cond_br ( use_regsave, from_regsave, from_stack) ;
328
+
329
+ bx. switch_to_block ( from_regsave) ;
330
+ // update va_ndx
331
+ bx. store ( offset_next, offset_ptr, bx. tcx ( ) . data_layout . pointer_align . abi ) ;
332
+
333
+ // (*va).va_reg
334
+ let regsave_area_ptr =
335
+ bx. inbounds_gep ( bx. type_i8 ( ) , va_list_addr, & [ bx. cx . const_usize ( va_reg_offset) ] ) ;
336
+ let regsave_area =
337
+ bx. load ( bx. type_ptr ( ) , regsave_area_ptr, bx. tcx ( ) . data_layout . pointer_align . abi ) ;
338
+ let regsave_value_ptr = bx. inbounds_gep ( bx. type_i8 ( ) , regsave_area, & [ offset] ) ;
339
+ bx. br ( end) ;
340
+
341
+ bx. switch_to_block ( from_stack) ;
342
+
343
+ // The first time we switch from regsave to stack we needs to adjust our offsets a bit.
344
+ // va_stk is set up such that the first stack argument is always at va_stk + 32.
345
+ // The corrected offset is written back into the va_list struct.
346
+
347
+ // let offset_corrected = cmp::max(offset, 32);
348
+ let stack_offset_start = bx. const_i32 ( 32 ) ;
349
+ let needs_correction = bx. icmp ( IntPredicate :: IntULE , offset, stack_offset_start) ;
350
+ let offset_corrected = bx. select ( needs_correction, stack_offset_start, offset) ;
351
+
352
+ // let offset_next_corrected = offset_corrected + slot_size;
353
+ // va_ndx = offset_next_corrected;
354
+ let offset_next_corrected = bx. add ( offset_next, bx. const_i32 ( slot_size) ) ;
355
+ // update va_ndx
356
+ bx. store ( offset_next_corrected, offset_ptr, bx. tcx ( ) . data_layout . pointer_align . abi ) ;
357
+
358
+ // let stack_value_ptr = unsafe { (*va).va_stk.byte_add(offset_corrected) };
359
+ let stack_area_ptr = bx. inbounds_gep ( bx. type_i8 ( ) , va_list_addr, & [ bx. cx . const_usize ( 0 ) ] ) ;
360
+ let stack_area = bx. load ( bx. type_ptr ( ) , stack_area_ptr, bx. tcx ( ) . data_layout . pointer_align . abi ) ;
361
+ let stack_value_ptr = bx. inbounds_gep ( bx. type_i8 ( ) , stack_area, & [ offset_corrected] ) ;
362
+ bx. br ( end) ;
363
+
364
+ bx. switch_to_block ( end) ;
365
+
366
+ // On big-endian, for values smaller than the slot size we'd have to align the read to the end
367
+ // of the slot rather than the start. While the ISA and GCC support big-endian, all the Xtensa
368
+ // targets supported by rustc are litte-endian so don't worry about it.
369
+
370
+ // if from_regsave {
371
+ // unsafe { *regsave_value_ptr }
372
+ // } else {
373
+ // unsafe { *stack_value_ptr }
374
+ // }
375
+ assert ! ( bx. tcx( ) . sess. target. endian == Endian :: Little ) ;
376
+ let value_ptr =
377
+ bx. phi ( bx. type_ptr ( ) , & [ regsave_value_ptr, stack_value_ptr] , & [ from_regsave, from_stack] ) ;
378
+ return bx. load ( layout. llvm_type ( bx) , value_ptr, layout. align . abi ) ;
379
+ }
380
+
273
381
pub ( super ) fn emit_va_arg < ' ll , ' tcx > (
274
382
bx : & mut Builder < ' _ , ' ll , ' tcx > ,
275
383
addr : OperandRef < ' tcx , & ' ll Value > ,
@@ -302,6 +410,7 @@ pub(super) fn emit_va_arg<'ll, 'tcx>(
302
410
let indirect: bool = target_ty_size > 8 || !target_ty_size. is_power_of_two ( ) ;
303
411
emit_ptr_va_arg ( bx, addr, target_ty, indirect, Align :: from_bytes ( 8 ) . unwrap ( ) , false )
304
412
}
413
+ "xtensa" => emit_xtensa_va_arg ( bx, addr, target_ty) ,
305
414
// For all other architecture/OS combinations fall back to using
306
415
// the LLVM va_arg instruction.
307
416
// https://llvm.org/docs/LangRef.html#va-arg-instruction
0 commit comments