forked from Leedehai/typst-physics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphysica.typ
953 lines (831 loc) · 28.5 KB
/
physica.typ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
// Copyright 2023 Leedehai
// Use of this code is governed by a MIT license in the LICENSE.txt file.
// Repository: https://github.com/Leedehai/typst-physics
// Please see physica-manual.pdf for user docs.
// Returns whether a Content object is an add/sub sequence, e.g. -a, a+b, a-b.
// The caller is responsible for ensuring the input is a Content object.
#let __is_add_sub_sequence(content) = {
if not content.has("children") { return false }
let impl(seq) = {
// Only check the top level, don't descend into the child, since we don't
// care if the child is a parenthesis group that contains +/-.
for child in seq.at("children") {
if child == [+] or child == [#sym.minus] { return true }
}
return false
}
// We don't consider math-style: see the reasons in the
// closed PR https://github.com/typst/typst/pull/3063
return impl(content)
}
// Returns whether a Content object holds an integer. The caller is responsible
// for ensuring the input is a Content object.
#let __content_holds_number(content) = {
return content.func() == text and regex("^\d+$") in content.text
}
// Given a Content generated from lr(), return the array of sub Content objects.
// Example: "[1,a_1,(1,1),n+1]" => "1", "a_1", "(1,1)", "n+1"
#let __extract_array_contents(input) = {
assert(type(input) == content, message: "expecting a content type input")
if input.func() != math.lr { return none }
// A Content object made by lr() definitely has a "body" field, and a
// "children" field underneath it. It holds an array of Content objects,
// starting with a Content holding "(" and ending with a Content holding ")".
let children = input.at("body").at("children")
let result_elements = () // array of Content objects
// Skip the delimiters at the two ends.
let inner_children = children.slice(1, children.len() - 1)
// "a_1", "(1,1)" are all recognized as one AST node, respectively,
// because they are syntactically meaningful in Typst. However, things like
// "a+b", "a*b" are recognized as 3 nodes, respectively, because in Typst's
// view they are just plain sequences of symbols. We need to join the symbols.
let current_element_pieces = () // array of Content objects
for i in range(inner_children.len()) {
let e = inner_children.at(i)
if e == [ ] or e == [] { continue; }
if e != [,] { current_element_pieces.push(e) }
if e == [,] or (i == inner_children.len() - 1) {
if current_element_pieces.len() > 0 {
result_elements.push(current_element_pieces.join())
current_element_pieces = ()
}
continue;
}
}
return result_elements;
}
// A bare-minimum-effort symbolic addition.
#let __bare_minimum_effort_symbolic_add(elements) = {
assert(type(elements) == array, message: "expecting an array of content")
let operands = () // array
for e in elements {
if not e.has("children") {
operands.push(e)
continue
}
// The elements is like "a+b" where there are multiple operands ("a", "b").
let current_operand = ()
let children = e.at("children")
for i in range(children.len()) {
let child = children.at(i)
if child == [+] {
operands.push(current_operand.join())
current_operand = ()
continue;
}
current_operand.push(child)
}
operands.push(current_operand.join())
}
let num_sum = 0
let map_id_to_sym = (:) // dictionary, symbol repr to symbol
let map_id_to_sym_sum = (:) // dictionary, symbol repr to number
for e in operands {
if __content_holds_number(e) {
num_sum += int(e.text)
continue
}
let is_num_times_sth = (
e.has("children") and __content_holds_number(e.at("children").at(0)))
if is_num_times_sth {
let leading_num = int(e.at("children").at(0).text)
let sym = e.at("children").slice(1).join() // join to one symbol
let sym_id = repr(sym) // string
if sym_id in map_id_to_sym {
let sym_sum_so_far = map_id_to_sym_sum.at(sym_id) // number
map_id_to_sym_sum.insert(sym_id, sym_sum_so_far + leading_num)
} else {
map_id_to_sym.insert(sym_id, sym)
map_id_to_sym_sum.insert(sym_id, leading_num)
}
} else {
let sym = e
let sym_id = repr(sym) // string
if repr(e) in map_id_to_sym {
let sym_sum_so_far = map_id_to_sym_sum.at(sym_id) // number
map_id_to_sym_sum.insert(sym_id, sym_sum_so_far + 1)
} else {
map_id_to_sym.insert(sym_id, sym)
map_id_to_sym_sum.insert(sym_id, 1)
}
}
}
let expr_terms = () // array of Content object
let sorted_sym_ids = map_id_to_sym.keys().sorted()
for sym_id in sorted_sym_ids {
let sym = map_id_to_sym.at(sym_id)
let sym_sum = map_id_to_sym_sum.at(sym_id) // number
if sym_sum == 1 {
expr_terms.push(sym)
} else if sym_sum != 0 {
expr_terms.push([#sym_sum #sym])
}
}
if num_sum != 0 {
expr_terms.push([#num_sum]) // make a Content object holding the number
}
return expr_terms.join([+])
}
// == Braces
#let Set(..sink) = {
let args = sink.pos() // array
let expr = args.at(0, default: none)
let cond = args.at(1, default: none)
if expr == none {
if cond == none { ${}$ } else { ${mid(|) #cond}$ }
} else {
if cond == none { ${#expr}$ } else { ${#expr mid(|) #cond}$ }
}
}
#let Order(content) = $cal(O)(content)$
#let order(content) = $cal(o)(content)$
#let evaluated(content) = {
$lr(zwj#content|)$
}
#let eval = evaluated
#let expectationvalue(..sink) = {
let args = sink.pos() // array
let expr = args.at(0, default: none)
let func = args.at(1, default: none)
if func == none {
$lr(angle.l expr angle.r)$
} else {
$lr(angle.l func#h(0pt)mid(|)#h(0pt)expr#h(0pt)mid(|)#h(0pt)func angle.r)$
}
}
#let expval = expectationvalue
// == Vector notations
#let vecrow(..content) = $lr(( #content.pos().join([,]) ))$
// Prefer using super-T-as-transpose() found below.
//
// Note Unicode U+1D40 (#str.from-unicode(7488)) is kinda ugly, and that
// glyph is in the superscript position already so users could not write
// the habitual "A^TT".
#let TT = $sans(upright(T))$
#let __vector(a, accent, be_bold, dotless: false) = {
let maybe_bold(e) = if be_bold {
math.bold(math.italic(e))
} else {
math.italic(e)
}
let maybe_dotless(e) = if dotless {
show "i": sym.dotless.i
show "j": sym.dotless.j
e
} else { e }
let maybe_accent(e) = if accent != none {
math.accent(maybe_bold(maybe_dotless(e)), accent)
} else {
maybe_bold(maybe_dotless(e))
}
if type(a) == content and a.func() == math.attach {
math.attach(
maybe_accent(a.base),
t: if a.has("t") { maybe_bold(a.t) } else { none },
b: if a.has("b") { maybe_bold(a.b) } else { none },
tl: if a.has("tl") { maybe_bold(a.tl) } else { none },
bl: if a.has("bl") { maybe_bold(a.bl) } else { none },
tr: if a.has("tr") { maybe_bold(a.tr) } else { none },
br: if a.has("br") { maybe_bold(a.br) } else { none },
)
} else {
maybe_accent(a)
}
}
#let vectorbold(a) = __vector(a, none, true)
#let vb = vectorbold
#let vectorunit(a, dotless: false) = __vector(a, math.hat, true, dotless: dotless)
#let vu = vectorunit
// According to "ISO 80000-2:2019 Quantities and units — Part 2: Mathematics"
// the vector notation should be either bold italic or non-bold italic accented
// by a right arrow
#let vectorarrow(a, dotless: false) = __vector(a, math.arrow, false, dotless: dotless)
#let va = vectorarrow
#let grad = $bold(nabla)$
#let div = $bold(nabla)dot.c$
#let curl = $bold(nabla)times$
#let laplacian = $nabla^2$
#let dotproduct = $dot$
#let dprod = dotproduct
#let crossproduct = $times$
#let cprod = crossproduct
#let innerproduct(u, v) = {
$lr(angle.l #u, #v angle.r)$
}
#let iprod = innerproduct
// == Matrices
// Display matrix element in display/inline style. The latter vertically
// compresses a tall content (e.g. a fraction) while the former doesn't.
// In Typst and LaTeX, a matrix element is automatically cramped, even if
// the matrix is in a standalone math block.
#let __mate(content, big) = {
if big {
math.display(content)
} else {
math.inline(content)
}
}
#let matrixdet(..sink) = {
math.mat(..sink, delim:"|")
}
#let mdet = matrixdet
#let diagonalmatrix(..sink) = {
let (args, kwargs) = (sink.pos(), sink.named()) // array, dictionary
let delim = kwargs.at("delim", default:"(")
let fill = kwargs.at("fill", default: none)
let arrays = () // array of arrays
let n = args.len()
for i in range(n) {
let array = range(n).map((j) => {
let e = if j == i { args.at(i) } else { fill }
return e
})
arrays.push(array)
}
math.mat(delim: delim, ..arrays)
}
#let dmat = diagonalmatrix
#let antidiagonalmatrix(..sink) = {
let (args, kwargs) = (sink.pos(), sink.named()) // array, dictionary
let delim = kwargs.at("delim", default:"(")
let fill = kwargs.at("fill", default: none)
let arrays = () // array of arrays
let n = args.len()
for i in range(n) {
let array = range(n).map((j) => {
let complement = n - 1 - i
let e = if j == complement { args.at(i) } else { fill }
return e
})
arrays.push(array)
}
math.mat(delim: delim, ..arrays)
}
#let admat = antidiagonalmatrix
#let identitymatrix(order, delim:"(", fill:none) = {
let order_num = if type(order) == content and __content_holds_number(order) {
int(order.text)
} else if type(order) == int {
order
} else {
panic("imat/identitymatrix: the order shall be an integer, e.g. 2")
}
let ones = range(order_num).map((i) => 1)
diagonalmatrix(..ones, delim: delim, fill: fill)
}
#let imat = identitymatrix
#let zeromatrix(order, delim:"(") = {
let order_num = if type(order) == content and __content_holds_number(order) {
int(order.text)
} else if type(order) == int {
order
} else {
panic("zmat/zeromatrix: the order shall be an integer, e.g. 2")
}
let ones = range(order_num).map((i) => 0)
diagonalmatrix(..ones, delim: delim, fill: 0)
}
#let zmat = zeromatrix
#let jacobianmatrix(fs, xs, delim:"(", big: false) = {
assert(type(fs) == array, message: "expecting an array of function names")
assert(type(xs) == array, message: "expecting an array of variable names")
let arrays = () // array of arrays
for f in fs {
arrays.push(xs.map((x) => __mate(math.frac($diff#f$, $diff#x$), big)))
}
math.mat(delim: delim, ..arrays)
}
#let jmat = jacobianmatrix
#let hessianmatrix(fs, xs, delim:"(", big: false) = {
assert(type(fs) == array, message: "usage: hessianmatrix(f; x, y...)")
assert(fs.len() == 1, message: "usage: hessianmatrix(f; x, y...)")
let f = fs.at(0)
assert(type(xs) == array, message: "expecting an array of variable names")
let row_arrays = () // array of arrays
let order = xs.len()
for r in range(order) {
let row_array = () // array
let xr = xs.at(r)
for c in range(order) {
let xc = xs.at(c)
row_array.push(__mate(math.frac(
$diff^2 #f$,
if xr == xc { $diff #xr^2$ } else { $diff #xr diff #xc$ }
), big))
}
row_arrays.push(row_array)
}
math.mat(delim: delim, ..row_arrays)
}
#let hmat = hessianmatrix
#let xmatrix(m, n, func, delim:"(") = {
let rows = if type(m) == content and __content_holds_number(m) {
int(m.text)
} else if type(m) == int {
m
} else {
panic("xmat/xmatrix: the first argument shall be an integer, e.g. 2")
}
let cols = if type(n) == content and __content_holds_number(m) {
int(n.text)
} else if type(n) == int {
n
} else {
panic("xmat/xmatrix: the second argument shall be an integer, e.g. 2")
}
assert(
type(func) == function,
message: "func shall be a function (did you forget to add a preceding '#' before the function name)?"
)
let row_arrays = () // array of arrays
for i in range(1, rows + 1) {
let row_array = () // array
for j in range(1, cols + 1) {
row_array.push(func(i, j))
}
row_arrays.push(row_array)
}
math.mat(delim: delim, ..row_arrays)
}
#let xmat = xmatrix
#let rot2mat(theta, delim:"(") = {
let operand = if type(theta) == content and __is_add_sub_sequence(theta) {
$(theta)$
} else { theta }
$mat(cos operand, -sin operand;
sin operand, cos operand; delim: delim)$
}
#let rot3xmat(theta, delim:"(") = {
let operand = if type(theta) == content and __is_add_sub_sequence(theta) {
$(theta)$
} else { theta }
$mat(1, 0, 0;
0, cos operand, -sin operand;
0, sin operand, cos operand; delim: delim)$
}
#let rot3ymat(theta, delim:"(") = {
let operand = if type(theta) == content and __is_add_sub_sequence(theta) {
$(theta)$
} else { theta }
$mat(cos operand, 0, sin operand;
0, 1, 0;
-sin operand, 0, cos operand; delim: delim)$
}
#let rot3zmat(theta, delim:"(") = {
let operand = if type(theta) == content and __is_add_sub_sequence(theta) {
$(theta)$
} else { theta }
$mat(cos operand, -sin operand, 0;
sin operand, cos operand, 0;
0, 0, 1; delim: delim)$
}
#let grammat(..sink) = {
let vs = sink.pos() // array
let delim = sink.named().at("delim", default: "(")
let asnorm = sink.named().at("norm", default: false)
xmat(vs.len(), vs.len(), (i,j) => {
if (i == j and (not asnorm)) or i != j {
iprod(vs.at(i - 1), vs.at(j - 1))
} else {
let v = vs.at(i - 1)
$norm(#v)^2$
}
}, delim: delim)
}
// == Dirac braket notations
#let bra(f) = $lr(angle.l #f|)$
#let ket(f) = $lr(|#f angle.r)$
#let braket(..sink) = style(styles => {
let args = sink.pos() // array
let bra = args.at(0, default: none)
let ket = args.at(-1, default: bra)
if args.len() <= 2 {
$ lr(angle.l bra#h(0pt)mid(|)#h(0pt)ket angle.r) $
} else {
let middle = args.at(1)
$ lr(angle.l bra#h(0pt)mid(|)#h(0pt)middle#h(0pt)mid(|)#h(0pt)ket angle.r) $
}
})
#let ketbra(..sink) = style(styles => {
let args = sink.pos() // array
assert(args.len() == 1 or args.len() == 2, message: "expecting 1 or 2 args")
let ket = args.at(0)
let bra = args.at(1, default: ket)
$ lr(|ket#h(0pt)mid(angle.r#h(0pt)angle.l)#h(0pt)bra|) $
})
#let matrixelement(n, M, m) = style(styles => {
$ lr(angle.l #n#h(0pt)mid(|)#h(0pt)#M#h(0pt)mid(|)#h(0pt)#m angle.r) $
})
#let mel = matrixelement
// == Math functions
#let sin = math.op("sin")
#let sinh = math.op("sinh")
#let arcsin = math.op("arcsin")
#let asin = math.op("asin")
#let cos = math.op("cos")
#let cosh = math.op("cosh")
#let arccos = math.op("arccos")
#let acos = math.op("acos")
#let tan = math.op("tan")
#let tanh = math.op("tanh")
#let arctan = math.op("arctan")
#let atan = math.op("atan")
#let sec = math.op("sec")
#let sech = math.op("sech")
#let arcsec = math.op("arcsec")
#let asec = math.op("asec")
#let csc = math.op("csc")
#let csch = math.op("csch")
#let arccsc = math.op("arccsc")
#let acsc = math.op("acsc")
#let cot = math.op("cot")
#let coth = math.op("coth")
#let arccot = math.op("arccot")
#let acot = math.op("acot")
#let diag = math.op("diag")
#let trace = math.op("trace")
#let tr = math.op("tr")
#let Trace = math.op("Trace")
#let Tr = math.op("Tr")
#let rank = math.op("rank")
#let erf = math.op("erf")
#let Res = math.op("Res")
#let Re = math.op("Re")
#let Im = math.op("Im")
#let sgn = $op("sgn")$
// == Differentials
#let differential(..sink) = {
let (args, kwargs) = (sink.pos(), sink.named()) // array, dictionary
let orders = ()
let var_num = args.len()
let default_order = [1] // a Content holding "1"
let last = args.at(args.len() - 1)
if type(last) == content {
if last.func() == math.lr and last.at("body").at("children").at(0) == [\[] {
var_num -= 1
orders = __extract_array_contents(last) // array
} else if __content_holds_number(last) {
var_num -= 1
default_order = last // treat as a single element
orders.push(default_order)
}
} else if type(last) == int {
var_num -= 1
default_order = [#last] // make it a Content
orders.push(default_order)
}
let dsym = kwargs.at("d", default: $upright(d)$)
let compact = kwargs.at("compact", default: false)
// Why a very thin space is the default joiner: see TeXBook, Chapter 18.
// math.thin (1/6 em, thinspace in typography) is used to separate the
// differential with the preceding function, so to keep visual cohesion, the
// width of this joiner inside the differential shall be smaller.
let prod = kwargs.at("p", default: if compact { none } else { h(0.09em) })
let difference = var_num - orders.len()
while difference > 0 {
orders.push(default_order)
difference -= 1
}
let arr = ()
for i in range(var_num) {
let (var, order) = (args.at(i), orders.at(i))
if order != [1] {
arr.push($dsym^#order#var$)
} else {
arr.push($dsym#var$)
}
}
// Smart spacing, like Typst's built-in "dif" symbol. See TeXBook, Chapter 18.
$op(#arr.join(prod))$
}
#let dd = differential
#let variation = dd.with(d: sym.delta)
#let var = variation
// Do not name it "delta", because it will collide with "delta" in math
// expressions (note in math mode "sym.delta" can be written as "delta").
#let difference = dd.with(d: sym.Delta)
#let __combine_var_order(var, order) = {
let naive_result = math.attach(var, t: order)
if type(var) != content or var.func() != math.attach {
return naive_result
}
if var.has("b") and (not var.has("t")) {
// Place the order superscript directly above the subscript, as is
// the custom is most papers.
return math.attach(var.base, t: order, b: var.b)
}
// Even if var.has("t") is true, we don't take any special action. Let
// user decide. Say, if they want to wrap var in a "(..)", let they do it.
return naive_result
}
#let derivative(f, ..sink) = {
if f == [] { f = none } // Convert empty content to none
let (args, kwargs) = (sink.pos(), sink.named()) // array, dictionary
assert(args.len() > 0, message: "variable name expected")
let d = kwargs.at("d", default: $upright(d)$)
let slash = kwargs.at("s", default: none)
let var = args.at(0)
assert(args.len() >= 1, message: "expecting at least one argument")
let display(num, denom, slash) = {
if slash == none {
$#num/#denom$
} else {
let sep = (sym.zwj, slash, sym.zwj).join()
$#num#sep#denom$
}
}
if args.len() >= 2 { // i.e. specified the order
let order = args.at(1) // Not necessarily representing a number
let upper = if f == none { $#d^#order$ } else { $#d^#order#f$ }
let varorder = __combine_var_order(var, order)
display(upper, $#d#varorder$, slash)
} else { // i.e. no order specified
let upper = if f == none { $#d$ } else { $#d#f$ }
display(upper, $#d#var$, slash)
}
}
#let dv = derivative
#let partialderivative(..sink) = {
let (args, kwargs) = (sink.pos(), sink.named()) // array, dictionary
assert(args.len() >= 2, message: "expecting one function name and at least one variable name")
let f = args.at(0)
if f == [] { f = none } // Convert empty content to none
let var_num = args.len() - 1
let orders = ()
let default_order = [1] // a Content holding "1"
// The last argument might be the order numbers, let's check.
let last = args.at(args.len() - 1)
if type(last) == content {
if last.func() == math.lr and last.at("body").at("children").at(0) == [\[] {
var_num -= 1
orders = __extract_array_contents(last) // array
} else if __content_holds_number(last) {
var_num -= 1
default_order = last
orders.push(default_order)
}
} else if type(last) == int {
var_num -= 1
default_order = [#last] // make it a Content
orders.push(default_order)
}
let difference = var_num - orders.len()
while difference > 0 {
orders.push(default_order)
difference -= 1
}
let total_order = none // any type, could be a number
// Do not use kwargs.at("total", default: ...), so as to avoid unnecessary
// premature evaluation of the default param.
total_order = if "total" in kwargs {
kwargs.at("total")
} else {
__bare_minimum_effort_symbolic_add(orders)
}
let lowers = ()
for i in range(var_num) {
let var = args.at(1 + i) // 1st element is the function name, skip
let order = orders.at(i)
if order == [1] {
lowers.push($diff#var$)
} else {
let varorder = __combine_var_order(var, order)
lowers.push($diff#varorder$)
}
}
let upper = if total_order != 1 and total_order != [1] { // number or Content
if f == none { $diff^#total_order$ } else { $diff^#total_order#f$ }
} else {
if f == none { $diff$ } else { $diff #f$ }
}
let display(num, denom, slash) = {
if slash == none {
math.frac(num, denom)
} else {
let sep = (sym.zwj, slash, sym.zwj).join()
$#num#sep#denom$
}
}
let slash = kwargs.at("s", default: none)
display(upper, lowers.join(), slash)
}
#let pdv = partialderivative
// == Miscellaneous
// With the default font, the original symbol `planck.reduce` has a slash on the
// letter "h", and it is different from the usual "hbar" symbol, which has a
// horizontal bar on the letter "h".
//
// Here, we manually create a "hbar" symbol by adding the font-independent
// horizontal bar produced by strike() to the current font's Planck symbol, so
// that the new "hbar" symbol and the existing Planck symbol look similar in any
// font (not just "New Computer Modern").
//
// However, strike() causes some side effects in math mode: it shifts the symbol
// downward. This seems like a Typst bug. Therefore, we need to use move() to
// eliminate those side effects so that the symbol behave nicely in math
// expressions.
//
// We also need to use wj (word joiner) to eliminate the unwanted horizontal
// spaces that manifests when using the symbol in math mode.
//
// Credit: Enivex in https://github.com/typst/typst/issues/355 was very helpful.
#let hbar = (sym.wj, move(dy: -0.08em, strike(offset: -0.55em, extent: -0.05em, sym.planck)), sym.wj).join()
// A show rule, should be used like:
// #show: super-T-as-transpose
// (A B)^T = B^T A^T
// or in scope:
// #[
// #show: super-T-as-transpose
// (A B)^T = B^T A^T
// ]
#let super-T-as-transpose(document) = {
show math.attach: elem => {
let __eligible(e) = {
if e.func() == math.limits or e.func() == math.scripts { return false }
if e.func() == math.lr {
let last = e.at("body").at("children").at(-1)
return __eligible(last)
}
if e.func() == math.equation {
return __eligible(e.at("body"))
}
((e != [∫]) and (e != [|]) and (e != [‖])
and (e != [∑]/*U+2211, not greek Sigma U+03A3*/)
and (e != [∏]/*U+220F, not greek Pi U+03A0 */))
}
if __eligible(elem.base) and elem.at("t", default: none) == [T] {
$attach(elem.base, t: TT, b: elem.at("b", default: #none))$
} else {
elem
}
}
document
}
// A show rule, should be used like:
// #show: super-plus-as-dagger
// U^+U = U U^+ = I
// or in scope:
// #[
// #show: super-plus-as-dagger
// U^+U = U U^+ = I
// ]
#let super-plus-as-dagger(document) = {
show math.attach: elem => {
let __eligible(e) = {
if e.func() == math.limits or e.func() == math.scripts { return false }
if e.func() == math.lr {
let last = e.at("body").at("children").at(-1)
return __eligible(last)
}
if e.func() == math.equation {
return __eligible(e.at("body"))
}
true
}
if __eligible(elem.base) and elem.at("t", default: none) == [+] {
$attach(elem.base, t: dagger, b: elem.at("b", default: #none))$
} else {
elem
}
}
document
}
#let tensor(T, ..sink) = {
let args = sink.pos()
let (uppers, lowers) = ((), ()) // array, array
let hphantom(s) = { hide($#s$) } // Like Latex's \hphantom
for i in range(args.len()) {
let arg = args.at(i)
let tuple = if arg.has("children") {
arg.at("children")
} else {
([+], sym.square)
}
assert(type(tuple) == array, message: "shall be array")
let pos = tuple.at(0)
let symbol = if tuple.len() >= 2 {
tuple.slice(1).join()
} else {
sym.square
}
if pos == [+] {
let rendering = $#symbol$
uppers.push(rendering)
lowers.push(hphantom(rendering))
} else { // Curiously, equality with [-] is always false, so we don't do it
let rendering = $#symbol$
uppers.push(hphantom(rendering))
lowers.push(rendering)
}
}
// Do not use "...^..._...", because the lower indices appear to be placed
// slightly lower than a normal subscript.
// Use a phantom with zwj (zero-width word joiner) to vertically align the
// starting points of the upper and lower indices. Also, we put T inside
// the first argument of attach(), so that the indices' vertical position
// auto-adjusts with T's height.
math.attach((T,hphantom(sym.zwj)).join(), t: uppers.join(), b: lowers.join())
}
#let taylorterm(fn, xv, x0, idx) = {
let maybeparen(expr) = {
if __is_add_sub_sequence(expr) { $(expr)$ }
else { expr }
}
if idx == [0] or idx == 0 {
$fn (x0)$
} else if idx == [1] or idx == 1 {
$fn^((1)) (x0)(xv - maybeparen(x0))$
} else {
$frac(fn^((idx)) (x0), maybeparen(idx) !)(xv - maybeparen(x0))^idx$
}
}
#let isotope(element, /*atomic mass*/a: none, /*atomic number*/z: none) = {
$attach(upright(element), tl: #a, bl: #z)$
}
#let __signal_element(e, W, color) = {
let style = 0.5pt + color
if e == "&" {
return rect(width: W, height: 1em, stroke: none)
} else if e == "n" {
return rect(width: 1em, height: W, stroke: (left: style, top: style, right: style))
} else if e == "u" {
return rect(width: W, height: 1em, stroke: (left: style, bottom: style, right: style))
} else if (e == "H" or e == "1") {
return rect(width: W, height: 1em, stroke: (top: style))
} else if e == "h" {
return rect(width: W * 50%, height: 1em, stroke: (top: style))
} else if e == "^" {
return rect(width: W * 10%, height: 1em, stroke: (top: style))
} else if (e == "M" or e == "-") {
return line(start: (0em, 0.5em), end: (W, 0.5em), stroke: style)
} else if e == "m" {
return line(start: (0em, 0.5em), end: (W * 0.5, 0.5em), stroke: style)
} else if (e == "L" or e == "0") {
return rect(width: W, height: 1em, stroke: (bottom: style))
} else if e == "l" {
return rect(width: W * 50%, height: 1em, stroke: (bottom: style))
} else if e == "v" {
return rect(width: W * 10%, height: 1em, stroke: (bottom: style))
} else if e == "=" {
return rect(width: W, height: 1em, stroke: (top: style, bottom: style))
} else if e == "#" {
return path(stroke: style, closed: false,
(0em, 0em), (W * 50%, 0em), (0em, 1em), (W, 1em),
(W * 50%, 1em), (W, 0em), (W * 50%, 0em),
)
} else if e == "|" {
return line(start: (0em, 0em), end: (0em, 1em), stroke: style)
} else if e == "'" {
return line(start: (0em, 0em), end: (0em, 0.5em), stroke: style)
} else if e == "," {
return line(start: (0em, 0.5em), end: (0em, 1em), stroke: style)
} else if e == "R" {
return line(start: (0em, 1em), end: (W, 0em), stroke: style)
} else if e == "F" {
return line(start: (0em, 0em), end: (W, 1em), stroke: style)
} else if e == "<" {
return path(stroke: style, closed: false, (W, 0em), (0em, 0.5em), (W, 1em))
} else if e == ">" {
return path(stroke: style, closed: false, (0em, 0em), (W, 0.5em), (0em, 1em))
} else if e == "C" {
return path(stroke: style, closed: false, (0em, 1em), ((W, 0em), (-W * 75%, 0.05em)))
} else if e == "c" {
return path(stroke: style, closed: false, (0em, 1em), ((W * 50%, 0em), (-W * 38%, 0.05em)))
} else if e == "D" {
return path(stroke: style, closed: false, (0em, 0em), ((W, 1em), (-W * 75%, -0.05em)))
} else if e == "d" {
return path(stroke: style, closed: false, (0em, 0em), ((W * 50%, 1em), (-W * 38%, -0.05em)))
} else if e == "X" {
return path(stroke: style, closed: false,
(0em, 0em), (W * 50%, 0.5em), (0em, 1em),
(W, 0em), (W * 50%, 0.5em), (W, 1em),
)
} else {
return "[" + e + "]"
}
}
#let signals(input, step: 1em, color: black) = {
assert(type(input) == str, message: "input needs to be a string")
let elements = () // array
let previous = " "
for e in input {
if e == " " { continue; }
if e == "." {
elements.push(__signal_element(previous, step, color))
} else {
elements.push(__signal_element(e, step, color))
previous = e
}
}
grid(
columns: (auto,) * elements.len(),
column-gutter: 0em,
..elements,
)
}
#let BMEsymadd(content) = {
let elements = __extract_array_contents(content)
__bare_minimum_effort_symbolic_add(elements)
}
// Add symbol definitions to the corresponding sections. Do not simply append
// them at the end of file.