-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathlive_detection.py
92 lines (75 loc) · 2.98 KB
/
live_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import numpy as np
import argparse
import time
import cv2
objectDetected = 'item'
with open('yolov3.txt', 'r') as f:
classes = [line.strip() for line in f.readlines()]
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
def distance_to_camera(knownWidth, focalLength, perWidth):
return (knownWidth * focalLength) / perWidth
def get_output_layers(net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return output_layers
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
label = str(classes[class_id])
color = COLORS[class_id]
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
cv2.putText(img, label+'('+str(int(confidence*100))+'%)', (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
net = cv2.dnn.readNet('yolov3.weights', 'yolov3.cfg')
print("[INFO] starting video stream...")
vs = cv2.VideoCapture(0)
start = time.time()
frame_count = 0.0
KNOWN_DISTANCE = 24.0
KNOWN_WIDTH = 11.0
while True:
ret, frame = vs.read()
cv2.resize(frame, (600, frame.shape[0]))
scale = 0.00392
(height, width) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, scale, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(get_output_layers(net))
class_ids = []
confidences = []
boxes = []
conf_threshold = 0.5
nms_threshold = 0.4
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = center_x - w / 2
y = center_y - h / 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
for i in indices:
i = i[0]
box = boxes[i]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
draw_prediction(frame, class_ids[i], confidences[i], round(x), round(y), round(x + w), round(y + h))
frame_count += 1
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
#if the `q` key was pressed, break from the loop
if key == ord("q"):
break
end = time.time()
time_elapsed = end - start
print("[INFO] elapsed time: {:.2f}".format(time_elapsed))
print("[INFO] approx. FPS: {:.2f}".format(frame_count / time_elapsed))
vs.release()
cv2.destroyAllWindows()