-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathquadric.c
526 lines (500 loc) · 16.2 KB
/
quadric.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
/////////////////////////////////////////////
//
// Mesh Simplification Tutorial
//
// (C) by Sven Forstmann in 2014
//
// License : MIT
// http://opensource.org/licenses/MIT
//
//https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification
//
// 5/2016: Chris Rorden created minimal version for OSX/Linux/Windows compile
// 1/2022: Chris Rorden ported from C++ to pure C
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#ifdef _MSC_VER
#else
#include <unistd.h>
#endif
#include <time.h>
#include "meshtypes.h"
#include "quadric.h"
#include <float.h> //FLT_EPSILON, DBL_EPSILON
typedef double TSymetricMatrix[10];
struct TRef{
int tid,tvertex;
};
struct TVertex { vec3d p;int tstart,tcount;TSymetricMatrix q;int border;};
struct TTriangle{
int v[3];
double err[4];
bool dirty, deleted;
vec3d n;
};
void symMat1(TSymetricMatrix ret, double c){
for (int i = 0; i < 10; i++)
ret[i] = c;
} // symMat()
void symMat4(TSymetricMatrix ret, double a,double b,double c,double d){
ret[0] = a*a; ret[1] = a*b; ret[2] = a*c; ret[3] = a*d;
ret[4] = b*b; ret[5] = b*c; ret[6] = b*d;
ret[7] = c*c; ret[8] = c*d;
ret[9] = d*d;
}// symMat2()
void symMat10(TSymetricMatrix ret, double m11, double m12, double m13, double m14, double m22, double m23, double m24, double m33, double m34, double m44){
ret[0] = m11; ret[1] = m12; ret[2] = m13; ret[3] = m14;
ret[4] = m22; ret[5] = m23; ret[6] = m24;
ret[7] = m33; ret[8] = m34;
ret[9] = m44;
} // symMat3()
void symMatAdd(TSymetricMatrix ret, TSymetricMatrix n, TSymetricMatrix m) {
symMat10(ret, n[0]+m[0], n[1]+m[1], n[2]+m[2], n[3]+m[3], n[4]+m[4],
n[5]+m[5], n[6]+m[6], n[7]+m[7], n[8]+m[8], n[9]+m[9]);
} // symMatAdd()
double symMatDet(TSymetricMatrix m, int a11, int a12, int a13, int a21, int a22, int a23, int a31, int a32, int a33) {
return m[a11]*m[a22]*m[a33] + m[a13]*m[a21]*m[a32] + m[a12]*m[a23]*m[a31]
- m[a13]*m[a22]*m[a31] - m[a11]*m[a23]*m[a32]- m[a12]*m[a21]*m[a33];
} // symMatDet()
vec3d ptf(double x, double y, double z) {
return (vec3d){.x = x, .y = y, .z = z};
}// ptf()
vec3d vCross(vec3d v1, vec3d v2) { //cross-product
return ptf(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x);
}
vec3d vSum(vec3d a, vec3d b){ //add two vectors
return ptf(a.x+b.x, a.y+b.y, a.z+b.z);
}
vec3d vSubtract(vec3d a, vec3d b){
return ptf(a.x-b.x, a.y-b.y, a.z-b.z);
}
void vNormalize(vec3d *v){ //make vector unit length
double len = sqrt( (v->x*v->x) + (v->y*v->y) + (v->z*v->z));
if (len <= 0) len = 0.001;
v->x = v->x / len;
v->y = v->y / len;
v->z = v->z / len;
}
double vDot (vec3d a,vec3d b){ //dot product
return a.x*b.x + a.y*b.y + a.z*b.z;
} // vDot()
vec3d vMult(vec3d a, double v){ //multiply
return ptf(a.x*v, a.y*v, a.z*v);
} // vMult()
double vertex_error(TSymetricMatrix q, double x, double y, double z){
return q[0]*x*x + 2*q[1]*x*y + 2*q[2]*x*z + 2*q[3]*x + q[4]*y*y
+ 2*q[5]*y*z + 2*q[6]*y + q[7]*z*z + 2*q[8]*z + q[9];
} // vertex_error()
double calculate_error(int id_v1, int id_v2, vec3d *p_result, struct TVertex vertices[]) {
TSymetricMatrix q;
symMatAdd(q, vertices[id_v1].q, vertices[id_v2].q);
int border = vertices[id_v1].border + vertices[id_v2].border;
double det = symMatDet(q, 0, 1, 2, 1, 4, 5, 2, 5, 7);
if (( det != 0.0) && ( border == 0)) {
// q_delta is invertible
p_result->x = -1.0/det*(symMatDet(q,1, 2, 3, 4, 5, 6, 5, 7 , 8)); // vx = A41/det(q_delta)
p_result->y = 1.0/det*(symMatDet(q,0, 2, 3, 1, 5, 6, 2, 7 , 8)); // vy = A42/det(q_delta)
p_result->z = -1.0/det*(symMatDet(q,0, 1, 3, 1, 4, 6, 2, 5, 8)); // vz = A43/det(q_delta)
return vertex_error(q, p_result->x, p_result->y, p_result->z);
return 1.0;
}
// det = 0 -> try to find best result
vec3d p1 = vertices[id_v1].p;
vec3d p2 = vertices[id_v2].p;
vec3d p3 = vMult(vSum(p1, p2), 0.5);
double error1 = vertex_error(q, p1.x,p1.y,p1.z);
double error2 = vertex_error(q, p2.x,p2.y,p2.z);
double error3 = vertex_error(q, p3.x,p3.y,p3.z);
double error = fmin(error1, fmin(error2, error3));
if (error1 == error) *p_result = p1;
if (error2 == error) *p_result = p2;
if (error3 == error) *p_result = p3;
return error;
}
#define loopi(start_l,end_l) for ( int i=start_l;i<end_l;++i )
#define loopi(start_l,end_l) for ( int i=start_l;i<end_l;++i )
#define loopj(start_l,end_l) for ( int j=start_l;j<end_l;++j )
#define loopk(start_l,end_l) for ( int k=start_l;k<end_l;++k )
#ifndef MAX
#define MAX(a,b) (((a)>(b))?(a):(b))
#endif
void update_mesh(int iteration, struct TTriangle triangles[], struct TVertex vertices[], struct TRef refs[], int *nrefs, int* nTri, int* nVert) {
if (iteration>0) { // compact triangles
int dst = 0;
for (int i = 0; i < *nTri; i++) {
if(!triangles[i].deleted) {
triangles[dst] = triangles[i];
dst = dst + 1;
}//if not deleted
} //for each triangle
*nTri = dst;
//realloc(triangles, dst); //<- we never resize
} //if iteration > 0
loopi(0,*nVert) {
vertices[i].tstart=0;
vertices[i].tcount=0;
}
loopi(0,*nTri)
loopj(0,3) vertices[triangles[i].v[j]].tcount++;
int tstart=0;
loopi(0,*nVert) {
vertices[i].tstart=tstart;
tstart+=vertices[i].tcount;
vertices[i].tcount=0;
}
int maxRef = 0;
loopi(0,*nTri) {
struct TTriangle *t=&triangles[i];
loopj(0,3) {
struct TVertex* v=&vertices[t->v[j]];
maxRef = MAX(v->tstart+v->tcount, maxRef);
}
}
*nrefs = maxRef + 1; //0..maxRef, so maxRef+1 items
loopi(0,*nTri) {
struct TTriangle *t=&triangles[i];
loopj(0,3) {
struct TVertex* v=&vertices[t->v[j]];
refs[v->tstart+v->tcount].tid=i;
refs[v->tstart+v->tcount].tvertex=j;
v->tcount++;
}
}
if( iteration != 0 ) return;
// Init Quadrics by Plane & Edge Errors
//
// required at the beginning ( iteration == 0 )
// recomputing during the simplification is not required,
// but mostly improves the result for closed meshes
//
// Identify boundary : vertices[].border=0,1
//std::vector<int> vcount,vids;
loopi(0,*nVert)
vertices[i].border=0;
int *vids = (int *)malloc(*nVert * sizeof(int));
int *vcount = (int *)malloc(*nVert * sizeof(int));
loopi(0,*nVert) {
int nvcount = 0;
struct TVertex* v=&vertices[i];
loopj(0,v->tcount) {
int k=refs[v->tstart+j].tid;
struct TTriangle *t=&triangles[k];
loopk(0,3) {
int ofs=0,id=t->v[k];
while(ofs < nvcount) {
if(vids[ofs]==id)break;
ofs++;
}
if(ofs == nvcount) {
vcount[nvcount] = 1;
vids[nvcount] = id;
nvcount++;
}
else
vcount[ofs]++;
}
}
loopj(0,nvcount) if(vcount[j]==1)
vertices[vids[j]].border=1;
}
free(vcount);
free(vids);
//initialize errors
loopi(0,*nVert)
symMat1(vertices[i].q, 0.0);
loopi(0,*nTri) {
struct TTriangle *t=&triangles[i];
vec3d n,p[3];
loopj(0,3) p[j]=vertices[t->v[j]].p;
n = vCross(vSubtract(p[1],p[0]),vSubtract(p[2],p[0]));
vNormalize(&n);
t->n=n;
loopj(0,3) {
TSymetricMatrix q;
symMat4(q, n.x,n.y,n.z,-vDot(n,p[0]));
symMatAdd(vertices[t->v[j]].q, vertices[t->v[j]].q, q);
}
}
loopi(0,*nTri) {
// Calc Edge Error
struct TTriangle *t=&triangles[i];
vec3d p;
loopj(0,3) t->err[j]=calculate_error(t->v[j],t->v[(j+1)%3],&p, vertices);
t->err[3]=fmin(t->err[0],fmin(t->err[1],t->err[2]));
}
}
void compact_mesh(struct TTriangle triangles[], struct TVertex vertices[], int* nTri, int* nVert){
int dst=0;
loopi(0,*nVert)
vertices[i].tcount=0;
loopi(0,*nTri) {
if(!triangles[i].deleted){
struct TTriangle t=triangles[i];
triangles[dst++]=t;
loopj(0,3)vertices[t.v[j]].tcount=1;
}
}
* nTri = dst;
dst=0;
loopi(0, *nVert) {
if(vertices[i].tcount) {
vertices[i].tstart=dst;
vertices[dst].p=vertices[i].p;
dst++;
}
}
loopi(0,*nTri){
struct TTriangle *t=&triangles[i];
loopj(0,3)t->v[j]=vertices[t->v[j]].tstart;
}
* nVert = dst;
}
void update_triangles(int i0, struct TVertex* v, bool *deleted, int* deleted_triangles, struct TTriangle triangles[], struct TRef refs[], struct TVertex vertices[], int * nrefs){
vec3d p;
loopk(0,v->tcount) {
struct TRef r=refs[v->tstart+k];
struct TTriangle *t=&triangles[r.tid];
if(t->deleted)continue;
if(deleted[k]) {
t->deleted=1;
*deleted_triangles = *deleted_triangles + 1;
continue;
}
t->v[r.tvertex]=i0;
t->dirty=1;
t->err[0]=calculate_error(t->v[0],t->v[1],&p, vertices);
t->err[1]=calculate_error(t->v[1],t->v[2],&p, vertices);
t->err[2]=calculate_error(t->v[2],t->v[0],&p, vertices);
t->err[3]=fmin(t->err[0],fmin(t->err[1],t->err[2]));
refs[*nrefs] = r;
*nrefs = *nrefs + 1;
}
}
bool flipped(vec3d p,int i0,int i1,struct TVertex v0, struct TVertex v1,bool *deleted, struct TTriangle triangles[], struct TRef refs[], struct TVertex vertices[]) {
loopk(0,v0.tcount) {
struct TTriangle *t=&triangles[refs[v0.tstart+k].tid];
if(t->deleted)continue;
int s=refs[v0.tstart+k].tvertex;
int id1=t->v[(s+1)%3];
int id2=t->v[(s+2)%3];
if(id1==i1 || id2==i1) {// delete ?
deleted[k]=1;
continue;
}
vec3d d1 = vSubtract(vertices[id1].p, p);
vNormalize(&d1);
vec3d d2 = vSubtract(vertices[id2].p, p);
vNormalize(&d2);
if(fabs(vDot(d1, d2))>0.999) return true;
vec3d n = vCross(d1,d2);
vNormalize(&n);
deleted[k]=0;
if (vDot(n, t->n)<0.2) return true;
}
return false;
}
void laplacian_smooth(vec3d *verts, vec3i *tris, int nvert, int ntri) {
vec3d* sum = (vec3d*) malloc(nvert * sizeof(vec3d));
memset(sum, 0, nvert * sizeof(vec3d));
int* num = (int*) malloc(nvert * sizeof(int));
memset(num, 0, nvert * sizeof(int));
loopi(0, ntri) {
//each point of a triangle has two neighbors:
int p0 = tris[i].x;
int p1 = tris[i].y;
int p2 = tris[i].z;
num[p0] += 2;
sum[p0] = vSum(sum[p0], vSum(verts[p1], verts[p2]));
num[p1] += 2;
sum[p1] = vSum(sum[p1], vSum(verts[p0], verts[p2]));
num[p2] += 2;
sum[p2] = vSum(sum[p2], vSum(verts[p0], verts[p1]));
}
loopi(0, nvert) { //mean location of neighbors
if (num[i] <= 0) continue;
verts[i].x = sum[i].x / num[i];
verts[i].y = sum[i].y / num[i];
verts[i].z = sum[i].z / num[i];
}
free(sum);
free(num);
}
void laplacian_smoothHC(vec3d *verts, vec3i *tris, int nvert, int ntri, double alpha, double beta, int iter, bool lockEdges) {
// Laplacian smooth with Humphrey’s Classes to preserve volume: https://doi.org/10.1111/1467-8659.00334
// trimesh.smoothing.filter_humphrey(mesh, alpha=0.1, beta=0.5, iterations=10) https://trimsh.org/trimesh.smoothing.html
double alpha1 = 1.0 - alpha;
double beta1 = 1.0 - beta;
vec3d* p = (vec3d*) malloc(nvert * sizeof(vec3d));
vec3d* q = (vec3d*) malloc(nvert * sizeof(vec3d));
vec3d* b = (vec3d*) malloc(nvert * sizeof(vec3d));
memcpy(p, verts, nvert * sizeof(vec3d)); //dst,src,n
loopj(0,iter) {
memcpy(q, p, nvert * sizeof(vec3d)); //dst,src,n
laplacian_smooth(p, tris, nvert, ntri);
loopi(0,nvert)
b[i] = vSubtract(p[i], vSum(vMult(verts[i], alpha), vMult(q[i], alpha1)));
memcpy(q, b, nvert * sizeof(vec3d));
laplacian_smooth(q, tris, nvert, ntri);
loopi(0,nvert)
p[i] = vSubtract(p[i], vSum(vMult(b[i], beta), vMult(q[i], beta1)));
}
free(q);
free(b);
if (!lockEdges) {
loopi(0,nvert)
verts[i] = p[i];
free(p);
return;
}
//find border edges:
struct TVertex* vertices = (struct TVertex*) malloc(nvert * sizeof(struct TVertex));
loopi(0, nvert)
vertices[i].p = verts[i];
struct TTriangle* triangles = (struct TTriangle*) malloc(ntri * sizeof(struct TTriangle));
loopi(0, ntri) {
triangles[i].deleted=0;
triangles[i].v[0] = tris[i].x;
triangles[i].v[1] = tris[i].y;
triangles[i].v[2] = tris[i].z;
}
int nref = 0;
struct TRef* refs = (struct TRef*) malloc(ntri * 9 * sizeof(struct TRef)); //overprovision initially *ntri * 3, allow room for growth
int ntriOK = ntri;
int vertex_count = nvert;
update_mesh(0, triangles, vertices, refs, &nref, &ntriOK, &vertex_count);
free(triangles);
free(refs);
loopi(0,nvert) {
if (vertices[i].border) continue;
verts[i] = p[i];
}
free(vertices);
free(p);
}
void quadric_simplify_mesh(vec3d **vs, vec3i **ts, int* nvert, int *ntri, int target_count, double agressiveness, bool verbose, bool finishLossless) {
// init: load vertices
vec3d *verts = *vs;
struct TVertex* vertices = (struct TVertex*) malloc(*nvert * sizeof(struct TVertex));
loopi(0,*nvert)
vertices[i].p = verts[i];
free(*vs);
//init: load triangle faces
vec3i *tris = *ts;
struct TTriangle* triangles = (struct TTriangle*) malloc(*ntri * sizeof(struct TTriangle));
loopi(0,*ntri) {
triangles[i].deleted=0;
triangles[i].v[0] = tris[i].x;
triangles[i].v[1] = tris[i].y;
triangles[i].v[2] = tris[i].z;
}
free(*ts);
int nref = 0;
struct TRef* refs = (struct TRef*) malloc(*ntri * 6 * sizeof(struct TRef)); //overprovision initially *ntri * 3, allow room for growth
//init other structures
bool* deleted0 = (bool*) malloc(*ntri * 3 * sizeof(bool)); //overprovision so we never need to realloc
bool* deleted1 = (bool*) malloc(*ntri * 3 * sizeof(bool)); //overprovision so we never need to realloc
// main iteration loop
int deleted_triangles=0;
int vertex_count = *nvert;
int triangle_count=*ntri;
int ntriOK = triangle_count;
int max_iter = 100;
bool lossy = true;
double threshold = DBL_EPSILON;
if (target_count >= ntriOK) {
lossy = false;
max_iter = 1000;
}
int iterationStartCount = 0;
for (int iteration = 0; iteration < max_iter; iteration ++) {
if ((lossy) && ((triangle_count-deleted_triangles)<=target_count)) {
if (!finishLossless) break;
lossy = false;
threshold = DBL_EPSILON;
max_iter = 1000;
}
if (lossy) {
//lossy: update mesh once in a while
if(iteration%5==0)
update_mesh(iteration, triangles, vertices, refs, &nref, &ntriOK, &vertex_count);
threshold = 0.000000001*pow((double)(iteration+3.0),agressiveness);
} else {
if (iterationStartCount == (triangle_count-deleted_triangles)) break;
//lossless: update mesh constantly
update_mesh(iteration, triangles, vertices, refs, &nref, &ntriOK, &vertex_count);
}
iterationStartCount = triangle_count-deleted_triangles;
// clear dirty flag
loopi(0,ntriOK)
triangles[i].dirty=0;
//
// All triangles with edges below the threshold will be removed
//
// The following numbers works well for most models.
// If it does not, try to adjust the 3 parameters
//
// target number of triangles reached ? Then break
if ((verbose) && (iteration%5==0))
printf(" iteration %d - triangles %d threshold %g\n",iteration,triangle_count-deleted_triangles, threshold);
// remove vertices & mark deleted triangles
loopi(0,ntriOK) {
struct TTriangle *t=&triangles[i];
if(t->err[3]>threshold) continue;
if(t->deleted) continue;
if(t->dirty) continue;
loopj(0,3)if(t->err[j]<threshold) {
int i0=t->v[j];
struct TVertex *v0 = &vertices[i0];
int i1=t->v[(j+1)%3];
struct TVertex *v1 = &vertices[i1];
if(v0->border != v1->border) continue;
// Compute vertex to collapse to
vec3d p;
calculate_error(i0,i1,&p, vertices);
if( flipped(p,i0,i1,*v0,*v1,deleted0, triangles, refs, vertices) ) continue;
if( flipped(p,i1,i0,*v1,*v0,deleted1, triangles, refs, vertices) ) continue;
// not flipped, so remove edge
v0->p=p;
symMatAdd(v0->q, v1->q, v0->q); //v0.q=v1.q+v0.q;
int tstart=nref;
update_triangles(i0,v0,deleted0,&deleted_triangles, triangles, refs, vertices, &nref);
update_triangles(i0,v1,deleted1,&deleted_triangles, triangles, refs, vertices, &nref);
int tcount=nref-tstart;
if(tcount<=v0->tcount) {
// save ram
if(tcount)memcpy(&refs[v0->tstart],&refs[tstart],tcount*sizeof(struct TRef));
}
else
// append
v0->tstart=tstart;
v0->tcount=tcount;
break;
}
// done?
//if(triangle_count-deleted_triangles<=target_count) threshold = DBL_EPSILON;
if((lossy) && ((triangle_count-deleted_triangles)<=target_count)) break;
} //for each triangle
} //for each iteration
free(refs);
free(deleted0);
free(deleted1);
triangle_count = ntriOK;
// clean up mesh
compact_mesh(triangles, vertices, &triangle_count, &vertex_count);
*ntri = triangle_count;
*ts= (vec3i *) malloc(*ntri * sizeof(vec3i));
tris = *ts;
loopi(0,*ntri)
tris[i] = (vec3i){ .x = triangles[i].v[0], .y = triangles[i].v[1], .z = triangles[i].v[2]};
*nvert = vertex_count;
*vs = (vec3d *) malloc(*nvert * sizeof(vec3d));
verts = *vs;
loopi(0,*nvert)
verts[i] = (vec3d){ .x = vertices[i].p.x, .y = vertices[i].p.y, .z = vertices[i].p.z};
free(triangles);
free(vertices);
} //quadric_simplify_mesh()