forked from akshitac8/Generative_MLZSL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
148 lines (124 loc) · 5.7 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#author: akshitac8
import torch
import torch.nn as nn
import torch.autograd as autograd
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import time
import random
import os
import csv
import numpy as np
import warnings
import networks.CLF_model as model
import classifier as classifier
from config import opt
import util as util
warnings.filterwarnings('ignore')
#############################################
#setting up seeds
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
np.random.seed(opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed(opt.manualSeed)
torch.cuda.manual_seed_all(opt.manualSeed)
torch.set_default_tensor_type('torch.FloatTensor')
cudnn.benchmark = True # For speed i.e, cudnn autotuner
########################################################
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
#init dataloader
data = util.DATA_LOADER(opt)
print("training batches: ", data.ntrain)
# print("Datatset", opt.dataset)
############## MODEL INITIALIZATION #############
netG = model.CLF(opt)
print(netG)
################################################
#init tensors
input_test_labels = torch.LongTensor(opt.fake_batch_size, opt.nclass_all)
input_test_early_fusion_att = torch.FloatTensor(opt.fake_batch_size, opt.attSize)
one = torch.FloatTensor([1])
mone = one * -1
if opt.cuda:
netG.cuda()
input_test_labels = input_test_labels.cuda()
input_test_early_fusion_att = input_test_early_fusion_att.cuda()
one = one.cuda()
mone = mone.cuda()
def fake_sample(batch_size):
#fake data synthesis dataloader
batch_test_labels, late_fusion_test_batch_att, early_fusion_test_batch_att = data.next_test_batch(batch_size)
input_test_labels.copy_(batch_test_labels)
input_test_early_fusion_att.copy_(early_fusion_test_batch_att)
return late_fusion_test_batch_att
def generate_syn_feature(netG, classes, batch_size):
## SYNTHESIS MULTI LABEL FEATURES
nsample = classes.shape[0] # zsl_classes or gzsl_classes
if not nsample % batch_size == 0:
nsample = nsample + (batch_size - (nsample % batch_size))
nclass = classes.shape[1]
syn_noise = torch.FloatTensor(batch_size, opt.attSize)
syn_feature = torch.FloatTensor(nsample, opt.resSize)
syn_label = torch.LongTensor(nsample, classes.shape[1])
if opt.cuda:
syn_noise = syn_noise.cuda()
for k, i in enumerate(range(0, nsample, batch_size)):
late_fusion_test_batch_att = fake_sample(batch_size)
syn_noise.normal_(0, 1)
with torch.no_grad():
output = netG(syn_noise, att=late_fusion_test_batch_att, avg_att=input_test_early_fusion_att)
syn_feature.narrow(0, k*batch_size, batch_size).copy_(output)
syn_label.narrow(0, k*batch_size, batch_size).copy_(input_test_labels)
return syn_feature, syn_label
save_path = "weights/best_ZSL_model.pth.tar" ##saved model weights path
netG = netG.cuda()
netG.load_state_dict(torch.load(save_path))
print("classifier training")
netG.eval()
gzsl_syn_feature, gzsl_syn_label = generate_syn_feature(netG, data.GZSL_fake_test_labels, opt.fake_batch_size)
nclass = opt.nclass_all
train_X = gzsl_syn_feature
train_Y = gzsl_syn_label
print(train_Y.shape)
tic = time.time()
gzsl_cls = classifier.CLASSIFIER(train_X, train_Y, data, nclass,
opt.cuda, opt, opt.classifier_lr, 0.5, opt.classifier_epoch,
opt.classifier_batch_size, True)
sum_f1_best_GZSL_AP = gzsl_cls.sum_F1_scores_seen_unseen[0]
sum_f1_best_GZSL_F1_3 = gzsl_cls.sum_F1_scores_seen_unseen[1]
sum_f1_best_GZSL_P_3 = gzsl_cls.sum_F1_scores_seen_unseen[2]
sum_f1_best_GZSL_R_3 = gzsl_cls.sum_F1_scores_seen_unseen[3]
sum_f1_best_GZSL_F1_5 = gzsl_cls.sum_F1_scores_seen_unseen[4]
sum_f1_best_GZSL_P_5 = gzsl_cls.sum_F1_scores_seen_unseen[5]
sum_f1_best_GZSL_R_5 = gzsl_cls.sum_F1_scores_seen_unseen[6]
print('GZSL: AP=%.4f' % (gzsl_cls.sum_F1_scores_seen_unseen[0]))
print('GZSL K=5 : f1=%.4f,P=%.4f,R=%.4f' % (
gzsl_cls.sum_F1_scores_seen_unseen[4], gzsl_cls.sum_F1_scores_seen_unseen[5], gzsl_cls.sum_F1_scores_seen_unseen[6]))
print('GZSL K=3 : f1=%.4f,P=%.4f,R=%.4f' % (
gzsl_cls.sum_F1_scores_seen_unseen[1], gzsl_cls.sum_F1_scores_seen_unseen[2], gzsl_cls.sum_F1_scores_seen_unseen[3]))
print("GZSL classification finished time taken {}".format(time.time()-tic))
temp_label = gzsl_syn_label[:, :len(data.seenclasses)].sum(1)
zsl_syn_label = gzsl_syn_label[temp_label == 0][:, len(data.seenclasses):]
zsl_syn_feature = gzsl_syn_feature[temp_label == 0]
print(zsl_syn_label.shape)
tic = time.time()
zsl_cls = classifier.CLASSIFIER(zsl_syn_feature, zsl_syn_label, data,
data.unseenclasses.size(0), opt.cuda, opt, opt.classifier_lr,
0.5, opt.classifier_epoch, opt.classifier_batch_size, False)
sum_f1_best_ZSL_AP = zsl_cls.sum_F1_scores[0]
sum_f1_best_ZSL_F1_3 = zsl_cls.sum_F1_scores[1]
sum_f1_best_ZSL_P_3 = zsl_cls.sum_F1_scores[2]
sum_f1_best_ZSL_R_3 = zsl_cls.sum_F1_scores[3]
sum_f1_best_ZSL_F1_5 = zsl_cls.sum_F1_scores[4]
sum_f1_best_ZSL_P_5 = zsl_cls.sum_F1_scores[5]
sum_f1_best_ZSL_R_5 = zsl_cls.sum_F1_scores[6]
print("ZSL classification finished time taken {}".format(time.time()-tic))
print('ZSL: AP=%.4f' % (zsl_cls.sum_F1_scores[0]))
print('ZSL K=5 : f1=%.4f,P=%.4f,R=%.4f' % (zsl_cls.sum_F1_scores[4], zsl_cls.sum_F1_scores[5], zsl_cls.sum_F1_scores[6]))
print('ZSL K=3 : f1=%.4f,P=%.4f,R=%.4f' % (zsl_cls.sum_F1_scores[1], zsl_cls.sum_F1_scores[2], zsl_cls.sum_F1_scores[3]))