-
Notifications
You must be signed in to change notification settings - Fork 78
/
run-test.py
161 lines (107 loc) · 4.66 KB
/
run-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python
'''
KERAS Deep Speech - test script
'''
#####################################################
import argparse
import datetime
import socket
#####################################################
from utils import *
from generator import *
from data import combine_all_wavs_and_trans_from_csvs
from model import *
from report import *
import keras
# from keras import backend as K
from keras.callbacks import ModelCheckpoint, TensorBoard
#######################################################
def main(args):
'''
only args.name args.test_files and args.loadcheckpointpath can be passed as args
'''
print("Getting data from arguments")
test_dataprops, df_test = combine_all_wavs_and_trans_from_csvs(args.test_files, sortagrad=False)
# check any special data model requirments e.g. a spectrogram
if(args.model_arch == 1):
model_input_type = "mfcc"
elif(args.model_arch == 2 or args.model_arch == 5):
print("Spectrogram required")
# spectrogram = True
model_input_type = "spectrogram"
else:
model_input_type = "mfcc"
## 2. init data generators
print("Creating data batch generators")
testdata = BatchGenerator(dataframe=df_test, dataproperties=test_dataprops,
training=False, batch_size=1, model_input_type=model_input_type)
## 3. Load existing or error
if args.loadcheckpointpath:
# load existing
print("Loading model")
cp = args.loadcheckpointpath
assert(os.path.isdir(cp))
trimmed = False
if trimmed:
model_path = os.path.join(cp, "TRIMMED_ds_model")
else:
model_path = os.path.join(cp, "model")
# assert(os.path.isfile(model_path))
model = load_model_checkpoint(model_path)
opt = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
print("Model loaded")
else:
# new model
raise("You need to load an existing trained model")
model.compile(optimizer=opt, loss=ctc)
## 4. test
train_steps = len(df_test.index) // 200
try:
y_pred = model.get_layer('ctc').input[0]
except Exception as e:
print("error", e)
print("couldn't find ctc layer, possibly a trimmed layer, trying other name")
y_pred = model.get_layer('out').output
input_data = model.get_layer('the_input').input
K.set_learning_phase(0)
report = K.function([input_data, K.learning_phase()], [y_pred])
report_cb = ReportCallback(report, testdata, model, args.name, save=False)
report_cb.force_output = True
report_cb.on_epoch_end(0, logs=None)
K.clear_session()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
#parser.add_argument('--loadcheckpointpath', type=str, default='./checkpoints/trimmed/',
parser.add_argument('--loadcheckpointpath', type=str, default='./checkpoints/epoch/LER-WER-best-DS3_2017-09-02_13-40',
help='If value set, load the checkpoint json '
'weights assumed as same name '
' e.g. --loadcheckpointpath ./checkpoints/'
'TRIMMED_ds_ctc_model ')
parser.add_argument('--name', type=str, default='',
help='name of run')
parser.add_argument('--test_files', type=str, default='',
help='list of all validation files, seperate by a comma if multiple')
parser.add_argument('--model_arch', type=int, default=3,
help='choose between model_arch versions (when training not loading) '
'--model_arch=1 uses DS1 fully connected layers with simplernn'
'--model_arch=2 uses DS2 fully connected with GRU'
'--model_arch=3 is custom model')
args = parser.parse_args()
runtime = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M')
if args.name == "":
args.name = "DS" + str(args.model_arch) + "_" + runtime
# detect if local user here
if socket.gethostname().lower() in 'rs-e5550'.lower():
timit_path = "./data/LDC/timit/"
libri_path = "./data/LibriSpeech/"
ted_path = "./data/ted/"
own_path = "./data/own/"
# sep = ","
# args.train_files = timit_path + "timit_train.csv" + sep + \
# libri_path + "librivox-dev-clean.csv" + sep + \
# ted_path + "ted-dev.csv"
#args.test_files = timit_path + "timit_test.csv"
args.test_files = own_path + "enron_test.csv"
assert (keras.__version__ == "2.0.4") ## CoreML is strict
print(args)
main(args)