-
Notifications
You must be signed in to change notification settings - Fork 8
/
stitch.py
205 lines (147 loc) · 5.69 KB
/
stitch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import cv2
import numpy as np
import argparse
import util
import json
import os
def fisheye_img_to_equirect(img, hfov, center, trans_mat=None):
height, width = img.shape[:2]
x_lim = height << 1
y_lim = height
xy_e = np.stack(np.indices((x_lim, y_lim)), -1).astype(np.double)
xy_e = xy_e.reshape(-1, xy_e.shape[-1])
xy_e = (xy_e / [x_lim / 2, y_lim / 2]) - 1
xy_3d = util.normalized_equirectangle_to_3d(xy_e)
xy_3d = xy_3d.dot(util.rotateX(-np.pi / 2))
if trans_mat is not None:
pad_xy = np.pad(xy_3d,
((0, 0), (0, 1)),
'constant',
constant_values=1)
xy_3d = pad_xy.dot(trans_mat)
xy_3d /= np.linalg.norm(xy_3d, axis=1).reshape((-1, 1))
xy_f = util.normalized_3d_to_fisheye(xy_3d, hfov)
# do distortion here
xy_f = util.distort(xy_f)
# xy_f is ndarry of (x, y) points in [-1, 1]x[-1,1]
xy_f *= radius
xy_f += center
xy_f = xy_f.reshape((x_lim, y_lim, 2))
# equirectangular projection
equi = cv2.remap(img,
xy_f[..., 0].T.astype(np.float32),
xy_f[..., 1].T.astype(np.float32),
cv2.INTER_CUBIC,
cv2.BORDER_REFLECT)
return equi
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image",
help="path to the dual fisheye image", required=True)
ap.add_argument("-c", "--calib",
help="path to calib data", required=True)
ap.add_argument("-d", "--debug",
help="save all debug images",
action='store_true')
args = ap.parse_args()
orig_img = cv2.imread(args.image)
img_size = orig_img.shape[0]
with open(args.calib) as fh:
data = json.load(fh)
circles = np.array(data["fisheye"][:4]).reshape((2, 2))
radius = data["fisheye"][4]
trans_mat = np.array(data["transform_3d"])
print("Loaded calibration data..")
gyro_rot = np.array(util.get_mijia360_gyro(args.image)).reshape(3, 3)
gyro_rot[:, [1, 2]] = gyro_rot[:, [2, 1]]
gyro_rot[[1, 2], :] = gyro_rot[[2, 1], :]
img1, img2 = np.hsplit(cv2.imread(args.image), 2)
img1 = util.add_alpha_channel(img1)
img2 = util.add_alpha_channel(img2)
if args.debug:
cv2.imwrite("fisheye_alpha.png", np.hstack([img1, img2]))
print("Projecting fisheye images to equirectangular projection..")
print("Projecting left fisheye image..")
equi1 = fisheye_img_to_equirect(img1, np.pi, circles[0])
print("Projecting right fisheye image..")
equi2 = fisheye_img_to_equirect(img2, np.pi, circles[1], trans_mat)
if args.debug:
cv2.imwrite('equi1.png', equi1)
cv2.imwrite('equi2.png', equi2)
print("Done projecting, starting stitching..")
zero_channel1 = np.isclose(equi1[..., 3], 0) # only channel2 active
zero_channel2 = np.isclose(equi2[..., 3], 0) # only channel1 active
equi1[zero_channel1] = [0, 0, 0, 0]
equi2[zero_channel2] = [0, 0, 0, 0]
zero_channel = np.logical_or(zero_channel1, zero_channel2)
overlap1 = equi1.copy()
overlap2 = equi2.copy()
overlap1[zero_channel] = [0, 0, 0, 0]
overlap2[zero_channel] = [0, 0, 0, 0]
overlap_y_min = np.where(zero_channel == 0)[0].min()
overlap_y_max = np.where(zero_channel == 0)[0].max()
src = equi1.copy()
dst = equi2.copy()
dst[zero_channel2] = src[zero_channel2]
overlayed = dst.copy()
if args.debug:
cv2.imwrite("equi_overlayed.png", dst)
overlap_y_min = np.where(zero_channel2)[0].max()
overlap_y_max = np.where(zero_channel1)[0].min()
overlap_y_mid = (overlap_y_max + overlap_y_min) / 2
overlap_y_gap = (overlap_y_max - overlap_y_min) / 6
overlap_y_min = int(round(overlap_y_mid - overlap_y_gap))
overlap_y_max = int(round(overlap_y_mid + overlap_y_gap))
equi1[overlap_y_max:, ...] = 0
equi2[:overlap_y_min, ...] = 0
src = cv2.cvtColor(src, cv2.COLOR_BGRA2BGR)
dst = cv2.cvtColor(dst, cv2.COLOR_BGRA2BGR)
equi1_overlap = equi1[overlap_y_min:overlap_y_max, ..., :3]
equi2_overlap = equi2[overlap_y_min:overlap_y_max, ..., :3]
if args.debug:
cv2.imwrite("overlap1.jpg", equi1_overlap)
cv2.imwrite("overlap2.jpg", equi2_overlap)
cv2.imwrite("diff_orig_equi.jpg", cv2.absdiff(
equi1_overlap, equi2_overlap))
print("Calculating optical flow and Warping..")
warped_overlap1, warped_overlap2 = util.flow_warp(equi1_overlap, equi2_overlap)
equi1[overlap_y_min:overlap_y_max, ..., :3] = warped_overlap1
equi2[overlap_y_min:overlap_y_max, ..., :3] = warped_overlap2
if args.debug:
cv2.imwrite("warped_equi1.png", equi1)
cv2.imwrite("warped_equi2.png", equi2)
print("Finding best seam..")
diff = cv2.absdiff(warped_overlap1, warped_overlap2)
diff = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
if args.debug:
cv2.imwrite("diff_warped_equi.jpg", diff)
seam = np.array(util.get_seam(diff))
seam = np.fliplr(seam)
diff = cv2.cvtColor(diff, cv2.COLOR_GRAY2BGR)
cv2.polylines(diff, [seam], False, (0, 0, 255), 2)
if args.debug:
cv2.imwrite("equi_diff_seam.jpg", diff)
seam[:, 1] += overlap_y_min
max_y = np.amax(seam[:, 1])
min_y = np.amin(seam[:, 1])
equi1 = cv2.cvtColor(equi1, cv2.COLOR_BGRA2BGR)
equi2 = cv2.cvtColor(equi2, cv2.COLOR_BGRA2BGR)
equi2[:overlap_y_min] = equi1[:overlap_y_min]
src_mask = np.zeros_like(equi1)
poly = np.array([
[0, 0],
[equi1.shape[0] * 2 - 1, 0],
],
)
poly = np.vstack([poly, seam])
cv2.fillPoly(src_mask, [poly], (255, 255, 255))
if args.debug:
cv2.imwrite('src_mask.jpg', src_mask)
center = (equi1_overlap.shape[1] // 2, max_y // 2 + 1)
print("Seamless stitching..")
output = cv2.seamlessClone(
equi1, equi2, src_mask, center, cv2.NORMAL_CLONE)
stitched_path = "360_" + os.path.basename(args.image)
cv2.imwrite(stitched_path, output)
print("Adding Google Photo Sphere XMP Metadata..")
util.add_xmp_data(args.image, stitched_path)
print("Stitchied image saved at -- {}".format(stitched_path))