forked from alibaba/Megatron-LLaMA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain_ict.py
167 lines (124 loc) · 5.85 KB
/
pretrain_ict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Pretrain BERT for Inverse Cloze Task"""
from functools import partial
import math
import torch
import torch.distributed as dist
import torch.nn.functional as F
from megatron import get_args
from megatron import print_rank_0
from megatron import get_timers
from megatron.core import mpu
from megatron.core.enums import ModelType
from megatron.data.biencoder_dataset_utils import get_ict_batch
from megatron.data.dataset_utils import build_train_valid_test_datasets
from megatron.model.biencoder_model import biencoder_model_provider
from megatron.training import pretrain
from megatron.utils import average_losses_across_data_parallel_group
def pretrain_ict_model_provider(pre_process=True, post_process=True):
args = get_args()
model = biencoder_model_provider(
only_context_model=False,
only_query_model=False,
biencoder_shared_query_context_model=\
args.biencoder_shared_query_context_model,
pre_process=pre_process, post_process=post_process)
return model
def get_group_world_size_rank():
group = mpu.get_data_parallel_group()
rank = torch.distributed.get_rank(group=group)
world_size = torch.distributed.get_world_size(group=group)
return group, rank, world_size
class AllgatherFromDataParallelRegion(torch.autograd.Function):
@staticmethod
def forward(ctx, input_):
assert input_.dim() == 2
group, rank, world_size = get_group_world_size_rank()
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
torch.distributed.all_gather(tensor_list, input_, group=group)
output = torch.cat(tensor_list, dim=0).contiguous()
return output
@staticmethod
def backward(ctx, grad_output):
group, rank, world_size = get_group_world_size_rank()
assert grad_output.shape[0] % world_size == 0
dim_size = grad_output.shape[0] // world_size
output_list = torch.split(grad_output, dim_size, dim=0)
# get chunk from this rank
output = output_list[rank].contiguous()
return output
def loss_func(output_tensor):
args = get_args()
query_logits, context_logits = output_tensor
micro_batch_size = query_logits.shape[0]
# recall we assert that tensor_model_parallel_size == 1
assert mpu.get_tensor_model_parallel_world_size() == 1, \
"Model parallel size > 1 not supported for ICT"
global_batch_size = dist.get_world_size() * micro_batch_size
all_query_logits = AllgatherFromDataParallelRegion.apply(query_logits)
all_context_logits = AllgatherFromDataParallelRegion.apply(context_logits)
# scores are inner products between query and context embeddings
retrieval_scores = torch.matmul(all_query_logits,
torch.transpose(all_context_logits, 0, 1))
# scaling the retriever scores
if args.retriever_score_scaling:
retrieval_scores = retrieval_scores / math.sqrt(args.hidden_size)
softmax_scores = F.log_softmax(retrieval_scores, dim=1)
sorted_vals, sorted_indices = torch.topk(softmax_scores,
k=softmax_scores.shape[1], sorted=True)
def topk_accuracy(k):
return torch.cuda.FloatTensor([sum([int(i in sorted_indices[i, :k]) \
for i in range(global_batch_size)]) / global_batch_size])
topk_accs = [topk_accuracy(int(k)) for k in args.retriever_report_topk_accuracies]
labels = torch.arange(global_batch_size).long().cuda()
loss = F.nll_loss(softmax_scores, labels, reduction='mean')
reduced_losses = average_losses_across_data_parallel_group([loss, *topk_accs])
# Scale the retrieval loss
loss = loss * mpu.get_data_parallel_world_size()
# create stats_dict with retrieval loss and all specified top-k accuracies
topk_acc_dict = {'top{}_acc'.format(k): v * 100 for k, v in \
zip(args.retriever_report_topk_accuracies, reduced_losses[1:])}
stats_dict = dict(loss=reduced_losses[0], **topk_acc_dict)
return loss, stats_dict
def forward_step(data_iterator, model):
"""Forward step."""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch-generator', log_level=2).start()
query_tokens, query_mask, \
context_tokens, context_mask, context_indices = get_ict_batch(data_iterator)
timers('batch-generator').stop()
# Query and Context Types
query_types = torch.cuda.LongTensor(*query_tokens.shape).fill_(0)
context_types = torch.cuda.LongTensor(*context_tokens.shape).fill_(0)
# Forward model.
output_tensor = model(query_tokens, query_mask, query_types, context_tokens,
context_mask, context_types)
return output_tensor, partial(loss_func)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid and test datasets."""
args = get_args()
print_rank_0('> building train, validation, and test datasets '
'for BERT ICT...')
train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
data_prefix=args.data_path,
data_impl=args.data_impl,
splits_string=args.split,
train_valid_test_num_samples=train_val_test_num_samples,
max_seq_length=args.seq_length,
masked_lm_prob=args.mask_prob,
short_seq_prob=args.short_seq_prob,
seed=args.seed,
skip_warmup=(not args.mmap_warmup),
binary_head=False,
dataset_type='ict')
print_rank_0("> finished creating BERT ICT datasets ...")
return train_ds, valid_ds, test_ds
if __name__ == "__main__":
pretrain(train_valid_test_datasets_provider,
pretrain_ict_model_provider,
ModelType.encoder_or_decoder,
forward_step,
args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})