-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp.py
46 lines (37 loc) · 1.54 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""
MLP network implemented using pytorch.
"""
import numpy as np
import torch
from sklearn import metrics
class MLP:
def __init__(self, learning_rate, batch_size, dimensions):
self.batch_size = batch_size
self.make_net(learning_rate, dimensions)
def make_net(self, learning_rate, dimensions):
input = dimensions[0]
hidden = dimensions[1]
out = dimensions[2]
self.net = torch.nn.Sequential(
torch.nn.Linear(input, hidden),
torch.nn.Tanh(),
torch.nn.Linear(hidden, hidden),
torch.nn.Tanh(),
torch.nn.Linear(hidden, out),
)
self.optimizer = torch.optim.SGD(self.net.parameters(), lr=learning_rate)
self.loss_func = torch.nn.MSELoss()
def train(self, images, labels):
for i in range(int(len(images)/self.batch_size)):
batch = images[i*self.batch_size:(i+1) * self.batch_size, :]
batch_label = np.array(labels)[i*self.batch_size:(i+1) * self.batch_size, :]
temp = torch.from_numpy(batch.astype(np.float32))
prediction = self.net(temp)
loss = self.loss_func(prediction, torch.Tensor(batch_label))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def predict(self, images, labels):
prediction = self.net(torch.from_numpy(images.astype(np.float32)))
loss = metrics.mean_squared_error(labels, prediction.data.numpy())
return prediction, loss