forked from microsoft/OmniParser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaction_matching.py
425 lines (356 loc) · 14.9 KB
/
action_matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
'''
Adapted from https://github.com/google-research/google-research/tree/master/android_in_the_wild
'''
import jax
import jax.numpy as jnp
import numpy as np
# import action_type as action_type_lib
import enum
class ActionType(enum.IntEnum):
# Placeholders for unused enum values
UNUSED_0 = 0
UNUSED_1 = 1
UNUSED_2 = 2
UNUSED_8 = 8
UNUSED_9 = 9
########### Agent actions ###########
# A type action that sends text to the emulator. Note that this simply sends
# text and does not perform any clicks for element focus or enter presses for
# submitting text.
TYPE = 3
# The dual point action used to represent all gestures.
DUAL_POINT = 4
# These actions differentiate pressing the home and back button from touches.
# They represent explicit presses of back and home performed using ADB.
PRESS_BACK = 5
PRESS_HOME = 6
# An action representing that ADB command for hitting enter was performed.
PRESS_ENTER = 7
########### Episode status actions ###########
# An action used to indicate the desired task has been completed and resets
# the environment. This action should also be used in the case that the task
# has already been completed and there is nothing to do.
# e.g. The task is to turn on the Wi-Fi when it is already on
STATUS_TASK_COMPLETE = 10
# An action used to indicate that desired task is impossible to complete and
# resets the environment. This can be a result of many different things
# including UI changes, Android version differences, etc.
STATUS_TASK_IMPOSSIBLE = 11
_TAP_DISTANCE_THRESHOLD = 0.14 # Fraction of the screen
ANNOTATION_WIDTH_AUGMENT_FRACTION = 1.4
ANNOTATION_HEIGHT_AUGMENT_FRACTION = 1.4
# Interval determining if an action is a tap or a swipe.
_SWIPE_DISTANCE_THRESHOLD = 0.04
def _yx_in_bounding_boxes(
yx, bounding_boxes
):
"""Check if the (y,x) point is contained in each bounding box.
Args:
yx: The (y, x) coordinate in pixels of the point.
bounding_boxes: A 2D int array of shape (num_bboxes, 4), where each row
represents a bounding box: (y_top_left, x_top_left, box_height,
box_width). Note: containment is inclusive of the bounding box edges.
Returns:
is_inside: A 1D bool array where each element specifies if the point is
contained within the respective box.
"""
y, x = yx
# `bounding_boxes` has shape (n_elements, 4); we extract each array along the
# last axis into shape (n_elements, 1), then squeeze unneeded dimension.
top, left, height, width = [
jnp.squeeze(v, axis=-1) for v in jnp.split(bounding_boxes, 4, axis=-1)
]
# The y-axis is inverted for AndroidEnv, so bottom = top + height.
bottom, right = top + height, left + width
return jnp.logical_and(y >= top, y <= bottom) & jnp.logical_and(
x >= left, x <= right)
def _resize_annotation_bounding_boxes(
annotation_positions, annotation_width_augment_fraction,
annotation_height_augment_fraction):
"""Resize the bounding boxes by the given fractions.
Args:
annotation_positions: Array of shape (N, 4), where each row represents the
(y, x, height, width) of the bounding boxes.
annotation_width_augment_fraction: The fraction to augment the box widths,
E.g., 1.4 == 240% total increase.
annotation_height_augment_fraction: Same as described for width, but for box
height.
Returns:
Resized bounding box.
"""
height_change = (
annotation_height_augment_fraction * annotation_positions[:, 2])
width_change = (
annotation_width_augment_fraction * annotation_positions[:, 3])
# Limit bounding box positions to the screen.
resized_annotations = jnp.stack([
jnp.maximum(0, annotation_positions[:, 0] - (height_change / 2)),
jnp.maximum(0, annotation_positions[:, 1] - (width_change / 2)),
jnp.minimum(1, annotation_positions[:, 2] + height_change),
jnp.minimum(1, annotation_positions[:, 3] + width_change),
],
axis=1)
return resized_annotations
def is_tap_action(normalized_start_yx,
normalized_end_yx):
distance = jnp.linalg.norm(
jnp.array(normalized_start_yx) - jnp.array(normalized_end_yx))
return distance <= _SWIPE_DISTANCE_THRESHOLD
def _is_non_dual_point_action(action_type):
return jnp.not_equal(action_type, ActionType.DUAL_POINT)
def _check_tap_actions_match(
tap_1_yx,
tap_2_yx,
annotation_positions,
matching_tap_distance_threshold_screen_percentage,
annotation_width_augment_fraction,
annotation_height_augment_fraction,
):
"""Determines if two tap actions are the same."""
resized_annotation_positions = _resize_annotation_bounding_boxes(
annotation_positions,
annotation_width_augment_fraction,
annotation_height_augment_fraction,
)
# Check if the ground truth tap action falls in an annotation's bounding box.
tap1_in_box = _yx_in_bounding_boxes(tap_1_yx, resized_annotation_positions)
tap2_in_box = _yx_in_bounding_boxes(tap_2_yx, resized_annotation_positions)
both_in_box = jnp.max(tap1_in_box & tap2_in_box)
# If the ground-truth tap action falls outside any of the annotation
# bounding boxes or one of the actions is inside a bounding box and the other
# is outside bounding box or vice versa, compare the points using Euclidean
# distance.
within_threshold = (
jnp.linalg.norm(jnp.array(tap_1_yx) - jnp.array(tap_2_yx))
<= matching_tap_distance_threshold_screen_percentage
)
return jnp.logical_or(both_in_box, within_threshold)
def _check_drag_actions_match(
drag_1_touch_yx,
drag_1_lift_yx,
drag_2_touch_yx,
drag_2_lift_yx,
):
"""Determines if two drag actions are the same."""
# Store drag deltas (the change in the y and x coordinates from touch to
# lift), magnitudes, and the index of the main axis, which is the axis with
# the greatest change in coordinate value (e.g. a drag starting at (0, 0) and
# ending at (0.3, 0.5) has a main axis index of 1).
drag_1_deltas = drag_1_lift_yx - drag_1_touch_yx
drag_1_magnitudes = jnp.abs(drag_1_deltas)
drag_1_main_axis = np.argmax(drag_1_magnitudes)
drag_2_deltas = drag_2_lift_yx - drag_2_touch_yx
drag_2_magnitudes = jnp.abs(drag_2_deltas)
drag_2_main_axis = np.argmax(drag_2_magnitudes)
return jnp.equal(drag_1_main_axis, drag_2_main_axis)
def check_actions_match(
action_1_touch_yx,
action_1_lift_yx,
action_1_action_type,
action_2_touch_yx,
action_2_lift_yx,
action_2_action_type,
annotation_positions,
tap_distance_threshold = _TAP_DISTANCE_THRESHOLD,
annotation_width_augment_fraction = ANNOTATION_WIDTH_AUGMENT_FRACTION,
annotation_height_augment_fraction = ANNOTATION_HEIGHT_AUGMENT_FRACTION,
):
"""Determines if two actions are considered to be the same.
Two actions being "the same" is defined here as two actions that would result
in a similar screen state.
Args:
action_1_touch_yx: The (y, x) coordinates of the first action's touch.
action_1_lift_yx: The (y, x) coordinates of the first action's lift.
action_1_action_type: The action type of the first action.
action_2_touch_yx: The (y, x) coordinates of the second action's touch.
action_2_lift_yx: The (y, x) coordinates of the second action's lift.
action_2_action_type: The action type of the second action.
annotation_positions: The positions of the UI annotations for the screen. It
is A 2D int array of shape (num_bboxes, 4), where each row represents a
bounding box: (y_top_left, x_top_left, box_height, box_width). Note that
containment is inclusive of the bounding box edges.
tap_distance_threshold: The threshold that determines if two taps result in
a matching screen state if they don't fall the same bounding boxes.
annotation_width_augment_fraction: The fraction to increase the width of the
bounding box by.
annotation_height_augment_fraction: The fraction to increase the height of
of the bounding box by.
Returns:
A boolean representing whether the two given actions are the same or not.
"""
action_1_touch_yx = jnp.asarray(action_1_touch_yx)
action_1_lift_yx = jnp.asarray(action_1_lift_yx)
action_2_touch_yx = jnp.asarray(action_2_touch_yx)
action_2_lift_yx = jnp.asarray(action_2_lift_yx)
# Checks if at least one of the actions is global (i.e. not DUAL_POINT),
# because if that is the case, only the actions' types need to be compared.
has_non_dual_point_action = jnp.logical_or(
_is_non_dual_point_action(action_1_action_type),
_is_non_dual_point_action(action_2_action_type),
)
#print("non dual point: "+str(has_non_dual_point_action))
different_dual_point_types = jnp.logical_xor(
is_tap_action(action_1_touch_yx, action_1_lift_yx),
is_tap_action(action_2_touch_yx, action_2_lift_yx),
)
#print("different dual type: "+str(different_dual_point_types))
is_tap = jnp.logical_and(
is_tap_action(action_1_touch_yx, action_1_lift_yx),
is_tap_action(action_2_touch_yx, action_2_lift_yx),
)
#print("is tap: "+str(is_tap))
taps_match = _check_tap_actions_match(
action_1_touch_yx,
action_2_touch_yx,
annotation_positions,
tap_distance_threshold,
annotation_width_augment_fraction,
annotation_height_augment_fraction,
)
#print("tap match: "+str(taps_match))
taps_match = jnp.logical_and(is_tap, taps_match)
#print("tap match: "+str(taps_match))
drags_match = _check_drag_actions_match(
action_1_touch_yx, action_1_lift_yx, action_2_touch_yx, action_2_lift_yx
)
drags_match = jnp.where(is_tap, False, drags_match)
#print("drag match: "+str(drags_match))
return jnp.where(
has_non_dual_point_action,
jnp.equal(action_1_action_type, action_2_action_type),
jnp.where(
different_dual_point_types,
False,
jnp.logical_or(taps_match, drags_match),
),
)
def action_2_format(step_data):
# 把test数据集中的动作格式转换为计算matching score的格式
action_type = step_data["action_type_id"]
if action_type == 4:
if step_data["action_type_text"] == 'click': # 点击
touch_point = step_data["touch"]
lift_point = step_data["lift"]
else: # 上下左右滑动
if step_data["action_type_text"] == 'scroll down':
touch_point = [0.5, 0.8]
lift_point = [0.5, 0.2]
elif step_data["action_type_text"] == 'scroll up':
touch_point = [0.5, 0.2]
lift_point = [0.5, 0.8]
elif step_data["action_type_text"] == 'scroll left':
touch_point = [0.2, 0.5]
lift_point = [0.8, 0.5]
elif step_data["action_type_text"] == 'scroll right':
touch_point = [0.8, 0.5]
lift_point = [0.2, 0.5]
else:
touch_point = [-1.0, -1.0]
lift_point = [-1.0, -1.0]
if action_type == 3:
typed_text = step_data["type_text"]
else:
typed_text = ""
action = {"action_type": action_type, "touch_point": touch_point, "lift_point": lift_point,
"typed_text": typed_text}
action["touch_point"] = [action["touch_point"][1], action["touch_point"][0]]
action["lift_point"] = [action["lift_point"][1], action["lift_point"][0]]
action["typed_text"] = action["typed_text"].lower()
return action
def pred_2_format(step_data):
# 把模型输出的内容转换为计算action_matching的格式
action_type = step_data["action_type"]
if action_type == 4: # 点击
action_type_new = 4
touch_point = step_data["click_point"]
lift_point = step_data["click_point"]
typed_text = ""
elif action_type == 0:
action_type_new = 4
touch_point = [0.5, 0.8]
lift_point = [0.5, 0.2]
typed_text = ""
elif action_type == 1:
action_type_new = 4
touch_point = [0.5, 0.2]
lift_point = [0.5, 0.8]
typed_text = ""
elif action_type == 8:
action_type_new = 4
touch_point = [0.2, 0.5]
lift_point = [0.8, 0.5]
typed_text = ""
elif action_type == 9:
action_type_new = 4
touch_point = [0.8, 0.5]
lift_point = [0.2, 0.5]
typed_text = ""
else:
action_type_new = action_type
touch_point = [-1.0, -1.0]
lift_point = [-1.0, -1.0]
typed_text = ""
if action_type_new == 3:
typed_text = step_data["typed_text"]
action = {"action_type": action_type_new, "touch_point": touch_point, "lift_point": lift_point,
"typed_text": typed_text}
action["touch_point"] = [action["touch_point"][1], action["touch_point"][0]]
action["lift_point"] = [action["lift_point"][1], action["lift_point"][0]]
action["typed_text"] = action["typed_text"].lower()
return action
def pred_2_format_simplified(step_data):
# 把模型输出的内容转换为计算action_matching的格式
action_type = step_data["action_type"]
if action_type == 'click' : # 点击
action_type_new = 4
touch_point = step_data["click_point"]
lift_point = step_data["click_point"]
typed_text = ""
elif action_type == 'scroll' and step_data["direction"] == 'down':
action_type_new = 4
touch_point = [0.5, 0.8]
lift_point = [0.5, 0.2]
typed_text = ""
elif action_type == 'scroll' and step_data["direction"] == 'up':
action_type_new = 4
touch_point = [0.5, 0.2]
lift_point = [0.5, 0.8]
typed_text = ""
elif action_type == 'scroll' and step_data["direction"] == 'left':
action_type_new = 4
touch_point = [0.2, 0.5]
lift_point = [0.8, 0.5]
typed_text = ""
elif action_type == 'scroll' and step_data["direction"] == 'right':
action_type_new = 4
touch_point = [0.8, 0.5]
lift_point = [0.2, 0.5]
typed_text = ""
elif action_type == 'type':
action_type_new = 3
touch_point = [-1.0, -1.0]
lift_point = [-1.0, -1.0]
typed_text = step_data["text"]
elif action_type == 'navigate_back':
action_type_new = 5
touch_point = [-1.0, -1.0]
lift_point = [-1.0, -1.0]
typed_text = ""
elif action_type == 'navigate_home':
action_type_new = 6
touch_point = [-1.0, -1.0]
lift_point = [-1.0, -1.0]
typed_text = ""
else:
action_type_new = action_type
touch_point = [-1.0, -1.0]
lift_point = [-1.0, -1.0]
typed_text = ""
# if action_type_new == 'type':
# typed_text = step_data["text"]
action = {"action_type": action_type_new, "touch_point": touch_point, "lift_point": lift_point,
"typed_text": typed_text}
action["touch_point"] = [action["touch_point"][1], action["touch_point"][0]]
action["lift_point"] = [action["lift_point"][1], action["lift_point"][0]]
action["typed_text"] = action["typed_text"].lower()
return action