-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
216 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
class Block < Chainer::Chain | ||
def initialize(out_channels, ksize, pad: 1) | ||
super() | ||
init_scope do | ||
@conv = Chainer::Links::Connection::Convolution2D.new(nil, out_channels, ksize, pad: pad, nobias: true) | ||
@bn = Chainer::Links::Normalization::BatchNormalization.new(out_channels) | ||
end | ||
end | ||
|
||
def call(x) | ||
h = @conv.(x) | ||
h = @bn.(h) | ||
Chainer::Functions::Activation::Relu.relu(h) | ||
end | ||
end | ||
|
||
class VGG < Chainer::Chain | ||
def initialize(class_labels: 10) | ||
super() | ||
init_scope do | ||
@block1_1 = Block.new(64, 3) | ||
@block1_2 = Block.new(64, 3) | ||
@block2_1 = Block.new(128, 3) | ||
@block2_2 = Block.new(128, 3) | ||
@block3_1 = Block.new(256, 3) | ||
@block3_2 = Block.new(256, 3) | ||
@block3_3 = Block.new(256, 3) | ||
@block4_1 = Block.new(512, 3) | ||
@block4_2 = Block.new(512, 3) | ||
@block4_3 = Block.new(512, 3) | ||
@block5_1 = Block.new(512, 3) | ||
@block5_2 = Block.new(512, 3) | ||
@block5_3 = Block.new(512, 3) | ||
@fc1 = Chainer::Links::Connection::Linear.new(nil, out_size: 512, nobias: true) | ||
@bn_fc1 = Chainer::Links::Normalization::BatchNormalization.new(512) | ||
@fc2 = Chainer::Links::Connection::Linear.new(nil, out_size: class_labels, nobias: true) | ||
end | ||
end | ||
|
||
def call(x) | ||
# 64 channel blocks: | ||
h = @block1_1.(x) | ||
h = Chainer::Functions::Noise::Dropout.dropout(h, ratio: 0.3) | ||
h = @block1_2.(h) | ||
h = Chainer::Functions::Pooling::MaxPooling2D.max_pooling_2d(h, 2, stride: 2) | ||
|
||
# 128 channel blocks: | ||
h = @block2_1.(h) | ||
h = Chainer::Functions::Noise::Dropout.dropout(h, ratio: 0.4) | ||
h = @block2_2.(h) | ||
h = Chainer::Functions::Pooling::MaxPooling2D.max_pooling_2d(h, 2, stride:2) | ||
|
||
# 256 channel blocks: | ||
h = @block3_1.(h) | ||
h = Chainer::Functions::Noise::Dropout.dropout(h, ratio: 0.4) | ||
h = @block3_2.(h) | ||
h = Chainer::Functions::Noise::Dropout.dropout(h, ratio: 0.4) | ||
h = @block3_3.(h) | ||
h = Chainer::Functions::Pooling::MaxPooling2D.max_pooling_2d(h, 2, stride: 2) | ||
|
||
# 512 channel blocks: | ||
h = @block4_1.(h) | ||
h = Chainer::Functions::Noise::Dropout.dropout(h, ratio: 0.4) | ||
h = @block4_2.(h) | ||
h = Chainer::Functions::Noise::Dropout.dropout(h, ratio: 0.4) | ||
h = @block4_3.(h) | ||
h = Chainer::Functions::Pooling::MaxPooling2D.max_pooling_2d(h, 2, stride: 2) | ||
|
||
# 512 channel blocks: | ||
h = @block5_1.(h) | ||
h = Chainer::Functions::Noise::Dropout.dropout(h, ratio: 0.4) | ||
h = @block5_2.(h) | ||
h = Chainer::Functions::Noise::Dropout.dropout(h, ratio: 0.4) | ||
h = @block5_3.(h) | ||
h = Chainer::Functions::Pooling::MaxPooling2D.max_pooling_2d(h, 2, stride: 2) | ||
|
||
h = Chainer::Functions::Noise::Dropout.dropout(h, ratio: 0.5) | ||
h = @fc1.(h) | ||
h = @bn_fc1.(h) | ||
h = Chainer::Functions::Activation::Relu.relu(h) | ||
h = Chainer::Functions::Noise::Dropout.dropout(h, ratio: 0.5) | ||
@fc2.(h) | ||
end | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
require 'chainer' | ||
require __dir__ + '/models/vgg' | ||
require 'optparse' | ||
|
||
args = { | ||
dataset: 'cifar10', | ||
frequency: -1, | ||
batchsize: 64, | ||
learnrate: 0.05, | ||
epoch: 300, | ||
out: 'result', | ||
resume: nil | ||
} | ||
|
||
|
||
opt = OptionParser.new | ||
opt.on('-d', '--dataset VALUE', "The dataset to use: cifar10 or cifar100 (default: #{args[:dataset]})") { |v| args[:dataset] = v } | ||
opt.on('-b', '--batchsize VALUE', "Number of images in each mini-batch (default: #{args[:batchsize]})") { |v| args[:batchsize] = v.to_i } | ||
opt.on('-f', '--frequency VALUE', "Frequency of taking a snapshot (default: #{args[:frequency]})") { |v| args[:frequency] = v.to_i } | ||
opt.on('-l', '--learnrate VALUE', "Learning rate for SGD (default: #{args[:learnrate]})") { |v| args[:learnrate] = v.to_f } | ||
opt.on('-e', '--epoch VALUE', "Number of sweeps over the dataset to train (default: #{args[:epoch]})") { |v| args[:epoch] = v.to_i } | ||
opt.on('-o', '--out VALUE', "Directory to output the result (default: #{args[:out]})") { |v| args[:out] = v } | ||
opt.on('-r', '--resume VALUE', "Resume the training from snapshot") { |v| args[:resume] = v } | ||
opt.parse!(ARGV) | ||
|
||
# Set up a neural network to train. | ||
# Classifier reports softmax cross entropy loss and accuracy at every | ||
# iteration, which will be used by the PrintReport extension below. | ||
if args[:dataset] == 'cifar10' | ||
puts 'Using CIFAR10 dataset.' | ||
class_labels = 10 | ||
train, test = Chainer::Datasets::CIFAR.get_cifar10 | ||
elsif args[:dataset] == 'cifar100' | ||
puts 'Using CIFAR100 dataset.' | ||
class_labels = 100 | ||
train, test = Chainer::Datasets::CIFAR.get_cifar100 | ||
else | ||
raise 'Invalid dataset choice.' | ||
end | ||
|
||
puts "setup..." | ||
|
||
model = Chainer::Links::Model::Classifier.new(VGG.new(class_labels: class_labels)) | ||
|
||
optimizer = Chainer::Optimizers::MomentumSGD.new(lr: args[:learnrate]) | ||
optimizer.setup(model) | ||
|
||
train_iter = Chainer::Iterators::SerialIterator.new(train, args[:batchsize]) | ||
test_iter = Chainer::Iterators::SerialIterator.new(test, args[:batchsize], repeat: false, shuffle: false) | ||
|
||
updater = Chainer::Training::StandardUpdater.new(train_iter, optimizer, device: -1) | ||
trainer = Chainer::Training::Trainer.new(updater, stop_trigger: [args[:epoch], 'epoch'], out: args[:out]) | ||
|
||
trainer.extend(Chainer::Training::Extensions::Evaluator.new(test_iter, model, device: -1)) | ||
|
||
trainer.extend(Chainer::Training::Extensions::ExponentialShift.new('lr', 0.5), trigger: [25, 'epoch']) | ||
|
||
frequency = args[:frequency] == -1 ? args[:epoch] : [1, args[:frequency]].max | ||
trainer.extend(Chainer::Training::Extensions::Snapshot.new, trigger: [frequency, 'epoch']) | ||
|
||
trainer.extend(Chainer::Training::Extensions::LogReport.new) | ||
trainer.extend(Chainer::Training::Extensions::PrintReport.new(['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) | ||
trainer.extend(Chainer::Training::Extensions::ProgressBar.new) | ||
|
||
if args[:resume] | ||
Chainer::Serializers::MarshalDeserializer.load_file(args[:resume], trainer) | ||
end | ||
|
||
trainer.run | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
require 'datasets' | ||
|
||
module Chainer | ||
module Datasets | ||
module CIFAR | ||
def self.get_cifar10(with_label: true, ndim: 3, scale: 1.0) | ||
get_cifar(10, with_label, ndim, scale) | ||
end | ||
|
||
def self.get_cifar100(with_label: true, ndim: 3, scale: 1.0) | ||
get_cifar(100, with_label, ndim, scale) | ||
end | ||
|
||
def self.get_cifar(n_classes, with_label, ndim, scale) | ||
train_data = [] | ||
train_labels = [] | ||
::Datasets::CIFAR.new(n_classes: n_classes, type: :train).each do |record| | ||
train_data << record.pixels | ||
train_labels << (n_classes == 10 ? record.label : record.fine_label) | ||
end | ||
|
||
test_data = [] | ||
test_labels = [] | ||
::Datasets::CIFAR.new(n_classes: n_classes, type: :test).each do |record| | ||
test_data << record.pixels | ||
test_labels << (n_classes == 10 ? record.label : record.fine_label) | ||
end | ||
|
||
[ | ||
preprocess_cifar(Numo::UInt8[*train_data], Numo::UInt8[*train_labels], with_label, ndim, scale), | ||
preprocess_cifar(Numo::UInt8[*test_data], Numo::UInt8[*test_labels], with_label, ndim, scale) | ||
] | ||
end | ||
|
||
def self.preprocess_cifar(images, labels, withlabel, ndim, scale) | ||
if ndim == 1 | ||
images = images.reshape(images.shape[0], 3072) | ||
elsif ndim == 3 | ||
images = images.reshape(images.shape[0], 3, 32, 32) | ||
else | ||
raise 'invalid ndim for CIFAR dataset' | ||
end | ||
images = images.cast_to(Numo::DFloat) | ||
images *= scale / 255.0 | ||
|
||
if withlabel | ||
labels = labels.cast_to(Numo::Int32) | ||
TupleDataset.new(images, labels) | ||
else | ||
images | ||
end | ||
end | ||
end | ||
end | ||
end | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters