-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneric_solver.py
58 lines (41 loc) · 2.12 KB
/
generic_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from typing import Callable
import numpy as np
def get_init_density(N: int = 100) -> list[np.ndarray]:
A, B, C, D, E, F = [np.zeros((N + 2, N + 2, N + 2)) for i in range(6)]
l, r = int(0.4 * N), int(0.6 * N) + 1
A[0, l:r, l:r] = 1
C[l:r, 0, l:r] = 1
E[l:r, l:r, 0] = 1
return [A, B, C, D, E, F]
def solve(density: list[np.ndarray],
sigma: float,
next_estimator: Callable,
threshold: float = 1e-6,
maxiter: int = 1000,
verbose: bool = False,
**kwargs) -> tuple[list[float], list[np.ndarray]]:
print("Method parameters (omega/relaxation):", kwargs.get("omega", kwargs.get("relaxation", {})))
residuals = []
for i in range(maxiter):
density_new = next_estimator(density, sigma, **kwargs)
residual, density = compute_residual(density_new, sigma), density_new
residuals.append(residual)
if verbose:
print(f"it={i} residual={residual:.8f}")
if residual < threshold:
print(f"{next_estimator.__name__} for sigma={sigma} completed {i} iterations: residual={residual:.8f}")
break
else:
print(f"{next_estimator.__name__} for sigma={sigma} completed {maxiter} iterations: residual={residual:.8f}")
return residuals, density
def compute_residual(density: list[np.ndarray], sigma: float) -> float:
N = density[0].shape[0] - 2
mean = sum(density)/6
A, B, C, D, E, F = density
resA = (N/2) * (A[1:-1, 1:-1, 1:-1] - A[:-2, 1:-1, 1:-1]) - sigma * (mean - A)[1:-1, 1:-1, 1:-1]
resC = (N/2) * (C[1:-1, 1:-1, 1:-1] - C[1:-1, :-2, 1:-1]) - sigma * (mean - C)[1:-1, 1:-1, 1:-1]
resE = (N/2) * (E[1:-1, 1:-1, 1:-1] - E[1:-1, 1:-1, :-2]) - sigma * (mean - E)[1:-1, 1:-1, 1:-1]
resB = (N/2) * (B[1:-1, 1:-1, 1:-1] - B[2:, 1:-1, 1:-1]) - sigma * (mean - B)[1:-1, 1:-1, 1:-1]
resD = (N/2) * (D[1:-1, 1:-1, 1:-1] - D[1:-1, 2:, 1:-1]) - sigma * (mean - D)[1:-1, 1:-1, 1:-1]
resF = (N/2) * (F[1:-1, 1:-1, 1:-1] - F[1:-1, 1:-1, 2:]) - sigma * (mean - F)[1:-1, 1:-1, 1:-1]
return sum(np.linalg.norm(res)**2 for res in [resA, resB, resC, resD, resE, resF]) ** 0.5