sudo apt-get install libpng-dev
sudo apt-get install python3-pil
sudo apt-get install python3-dev
pip3 install --upgrade --no-cache-dir dlib
sudo apt-get install python3-pil
Install dlib(from source, gpu) on Jetson NX did not work correctly
My environment: Xavier NX + JetPack 4.6
I solved this issue following the help here: https://forums.developer.nvidia.com/t/simple-accelerated-face-recognition/142679/19
Most importantly, make sure you use dlib19.21, neither dlib19.23 nor dlib 19.17.
Simple accelerated face recognition
Hi,
The fix is adding the cuDNNv8 new API support.And it is available in the newest dlib-19.21 release in Aug 8.
So you can build it from source directly:
$ sudo apt-get install python3-pip
$ sudo apt-get install libjpeg-dev
https://drive.google.com/file/d/1Bck3tXiV2Gtok-R8R0rNS40hGmsrVPo_/view?usp=share_link
$ wget http://dlib.net/files/dlib-19.21.tar.bz2
$ tar jxvf dlib-19.21.tar.bz2
$ cd dlib-19.21/
$ mkdir build
$ cd build/
$ cmake ..
$ cmake --build .
$ cd ../
$ sudo python3 setup.py install
$ sudo pip3 install face_recognition
Please create Images folder and store some testing images in the folder.
test.py
import cv2
import os
import numpy as np
import dlib
face_locations = []
face_encodings = []
### Path where images are present for testingimagefolderpath = "Images/"
### Model for face detectionface_detector = dlib.get_frontal_face_detector()
for image in os.listdir(imagefolderpath):
image = cv2.imread(os.path.join(imagefolderpath,image),1)
t = time.time()
faces = face_detector(image,0)
for face in faces:
x,y,w,h = face.left(),face.top(),face.right(),face.bottom()
face_locations.append((x,y,h,w))
face_encodings = face_recognition.face_encodings(image, known_face_locations = face_locations, num_jitters = 1)
for (left, top, bottom, right) in face_locations:
cv2.rectangle(image, (left,top), (right, bottom), (0, 0, 255), 2)
cv2.imshow('Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
python3 test.py
...
-- Found CUDA: /usr/local/cuda (found suitable version "10.2", minimum required is "7.5")-- Looking for cuDNN install...-- Found cuDNN: /usr/lib/aarch64-linux-gnu/libcudnn.so-- Building a CUDA test project to see if your compiler is compatible with CUDA...-- Building a cuDNN test project to check if you have the right version of cuDNN installed...-- Enabling CUDA support for dlib. DLIB WILL USE CUDA-- C++11 activated.-- Configuring done-- Generating done-- Build files have been written to: /home/nvidia/dlib-19.21/build
Thanks.