-
Notifications
You must be signed in to change notification settings - Fork 41
/
pacman.py
executable file
·867 lines (713 loc) · 35.4 KB
/
pacman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
# pacman.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
"""
Pacman.py holds the logic for the classic pacman game along with the main
code to run a game. This file is divided into three sections:
(i) Your interface to the pacman world:
Pacman is a complex environment. You probably don't want to
read through all of the code we wrote to make the game runs
correctly. This section contains the parts of the code
that you will need to understand in order to complete the
project. There is also some code in game.py that you should
understand.
(ii) The hidden secrets of pacman:
This section contains all of the logic code that the pacman
environment uses to decide who can move where, who dies when
things collide, etc. You shouldn't need to read this section
of code, but you can if you want.
(iii) Framework to start a game:
The final section contains the code for reading the command
you use to set up the game, then starting up a new game, along with
linking in all the external parts (agent functions, graphics).
Check this section out to see all the options available to you.
To play your first game, type 'python pacman.py' from the command line.
The keys are 'a', 's', 'd', and 'w' to move (or arrow keys). Have fun!
"""
from game import GameStateData
from game import Game
from game import Directions
from game import Actions
from util import nearestPoint
from util import manhattanDistance
import util, layout
import sys, types, time, random, os
###################################################
# YOUR INTERFACE TO THE PACMAN WORLD: A GameState #
###################################################
class GameState:
"""
A GameState specifies the full game state, including the food, capsules,
agent configurations and score changes.
GameStates are used by the Game object to capture the actual state of the game and
can be used by agents to reason about the game.
Much of the information in a GameState is stored in a GameStateData object. We
strongly suggest that you access that data via the accessor methods below rather
than referring to the GameStateData object directly.
Note that in classic Pacman, Pacman is always agent 0.
"""
####################################################
# Accessor methods: use these to access state data #
####################################################
# static variable keeps track of which states have had getLegalActions called
explored = set()
def getAndResetExplored():
tmp = GameState.explored.copy()
GameState.explored = set()
return tmp
getAndResetExplored = staticmethod(getAndResetExplored)
def getLegalActions( self, agentIndex=0 ):
"""
Returns the legal actions for the agent specified.
"""
if self.isWin() or self.isLose(): return []
if agentIndex == 0: # Pacman is moving
return PacmanRules.getLegalActions( self )
else:
return GhostRules.getLegalActions( self, agentIndex )
def getOriginalLegalActions( self, agentIndex=0 ):
"""
Returns the legal actions for the agent specified.
"""
if self.isWin() or self.isLose(): return []
if agentIndex == 0: # Pacman is moving
return PacmanRules.getLegalActions( self )
else:
return GhostRules.getOriginalLegalActions( self, agentIndex )
def generateSuccessor( self, agentIndex, action):
"""
Returns the successor state after the specified agent takes the action.
"""
# Check that successors exist
if self.isWin() or self.isLose(): raise Exception('Can\'t generate a successor of a terminal state.')
# Copy current state
state = GameState(self)
# Let agent's logic deal with its action's effects on the board
if agentIndex == 0: # Pacman is moving
state.data._eaten = [False for i in range(state.getNumAgents())]
PacmanRules.applyAction( state, action )
else: # A ghost is moving
GhostRules.applyAction( state, action, agentIndex )
# Time passes
if agentIndex == 0:
state.data.scoreChange += -TIME_PENALTY # Penalty for waiting around
else:
GhostRules.decrementTimer( state.data.agentStates[agentIndex] )
# Resolve multi-agent effects
GhostRules.checkDeath( state, agentIndex )
# Book keeping
state.data._agentMoved = agentIndex
state.data.score += state.data.scoreChange
GameState.explored.add(self)
GameState.explored.add(state)
return state
def getLegalPacmanActions( self ):
return self.getLegalActions( 0 )
def generatePacmanSuccessor( self, action ):
"""
Generates the successor state after the specified pacman move
"""
return self.generateSuccessor( 0, action )
def getPacmanState( self ):
"""
Returns an AgentState object for pacman (in game.py)
state.pos gives the current position
state.direction gives the travel vector
"""
return self.data.agentStates[0].copy()
def getPacmanPosition( self ):
return self.data.agentStates[0].getPosition()
def getGhostStates( self ):
return self.data.agentStates[1:]
def getGhostState( self, agentIndex ):
if agentIndex == 0 or agentIndex >= self.getNumAgents():
raise Exception("Invalid index passed to getGhostState")
return self.data.agentStates[agentIndex]
def getGhostPosition( self, agentIndex ):
if agentIndex == 0:
raise Exception("Pacman's index passed to getGhostPosition")
return self.data.agentStates[agentIndex].getPosition()
def getGhostPositions(self):
return [s.getPosition() for s in self.getGhostStates()]
def getGhostStateFromPosition(self, position):
for g in self.getGhostStates():
if g.getPosition() == position:
return g
return None
def getNumAgents( self ):
return len( self.data.agentStates )
def getScore( self ):
return float(self.data.score)
def getCapsules(self):
"""
Returns a list of positions (x,y) of the remaining capsules.
"""
return self.data.capsules
def getNumFood( self ):
return self.data.food.count()
def getFood(self):
"""
Returns a Grid of boolean food indicator variables.
Grids can be accessed via list notation, so to check
if there is food at (x,y), just call
currentFood = state.getFood()
if currentFood[x][y] == True: ...
"""
return self.data.food
def getWalls(self):
"""
Returns a Grid of boolean wall indicator variables.
Grids can be accessed via list notation, so to check
if there is a wall at (x,y), just call
walls = state.getWalls()
if walls[x][y] == True: ...
"""
return self.data.layout.walls
def hasFood(self, x, y):
return self.data.food[x][y]
def hasWall(self, x, y):
return self.data.layout.walls[x][y]
def isLose( self ):
return self.data._lose
def isWin( self ):
return self.data._win
#############################################
# Helper methods: #
# You shouldn't need to call these directly #
#############################################
def __init__( self, prevState = None ):
"""
Generates a new state by copying information from its predecessor.
"""
if prevState != None: # Initial state
self.data = GameStateData(prevState.data)
else:
self.data = GameStateData()
def deepCopy( self ):
state = GameState( self )
state.data = self.data.deepCopy()
return state
def __eq__( self, other ):
"""
Allows two states to be compared.
"""
return hasattr(other, 'data') and self.data == other.data
def __hash__( self ):
"""
Allows states to be keys of dictionaries.
"""
return hash( self.data )
def __str__( self ):
return str(self.data)
def initialize( self, layout, numGhostAgents=1000 ):
"""
Creates an initial game state from a layout array (see layout.py).
"""
self.data.initialize(layout, numGhostAgents)
############################################################################
# THE HIDDEN SECRETS OF PACMAN #
# #
# You shouldn't need to look through the code in this section of the file. #
############################################################################
SCARED_TIME = 40 # Moves ghosts are scared
COLLISION_TOLERANCE = 0.7 # How close ghosts must be to Pacman to kill
TIME_PENALTY = 0 # Number of points lost each round
WIN_SCORE = 500
LOSE_SCORE = -500
class ClassicGameRules:
"""
These game rules manage the control flow of a game, deciding when
and how the game starts and ends.
"""
def __init__(self, timeout=30):
self.timeout = timeout
def newGame( self, layout, pacmanAgent, ghostAgents, display, quiet = False, catchExceptions=False):
agents = [pacmanAgent] + ghostAgents[:layout.getNumGhosts()]
initState = GameState()
initState.initialize( layout, len(ghostAgents) )
game = Game(agents, display, self, catchExceptions=catchExceptions)
game.state = initState
self.initialState = initState.deepCopy()
self.quiet = quiet
return game
def process(self, state, game):
"""
Checks to see whether it is time to end the game.
"""
if state.isWin(): self.win(state, game)
if state.isLose(): self.lose(state, game)
def win( self, state, game ):
if not self.quiet: print "Pacman emerges victorious! Score: %d" % state.data.score
game.gameOver = True
def lose( self, state, game ):
if not self.quiet: print "Pacman died! Score: %d" % state.data.score
game.gameOver = True
def getProgress(self, game):
return float(game.state.getNumFood()) / self.initialState.getNumFood()
def agentCrash(self, game, agentIndex):
if agentIndex == 0:
print "Pacman crashed"
else:
print "A ghost crashed"
def getMaxTotalTime(self, agentIndex):
return self.timeout
def getMaxStartupTime(self, agentIndex):
return self.timeout
def getMoveWarningTime(self, agentIndex):
return self.timeout
def getMoveTimeout(self, agentIndex):
return self.timeout
def getMaxTimeWarnings(self, agentIndex):
return 0
class PacmanRules:
"""
These functions govern how pacman interacts with his environment under
the classic game rules.
"""
PACMAN_SPEED=1
def getLegalActions( state ):
"""
Returns a list of possible actions.
"""
return Actions.getPossibleActions( state.getPacmanState().configuration, state.data.layout.walls )
getLegalActions = staticmethod( getLegalActions )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
applyAction = staticmethod( applyAction )
def consume( position, state ):
x,y = position
# Eat food
if state.data.food[x][y]:
state.data.scoreChange += 10
state.data.food = state.data.food.copy()
state.data.food[x][y] = False
state.data._foodEaten = position
numFood = state.getNumFood()
# TODO: Aca se podria cambiar la condicion ganadora a numFood = nghosts o algo asi.
# NOTE: Condicion ganadora
# Es decir, algo que no requiera comer todo y le deje un margen al Pacman.
if numFood == 0 and not state.data._lose:
state.data.scoreChange += WIN_SCORE
state.data._win = True
# Eat capsule
if( position in state.getCapsules() ):
state.data.capsules.remove( position )
state.data._capsuleEaten = position
# Reset all ghosts' scared timers
for index in range( 1, len( state.data.agentStates ) ):
state.data.agentStates[index].scaredTimer = SCARED_TIME
consume = staticmethod( consume )
class GhostRules:
"""
These functions dictate how ghosts interact with their environment.
"""
GHOST_SPEED=1.0
def getLegalActions( state, ghostIndex ):
"""
Ghosts cannot stop, and cannot turn around unless they
reach a dead end, but can turn 90 degrees at intersections.
"""
conf = state.getGhostState( ghostIndex ).configuration
possibleActions = Actions.getPossibleActions( conf, state.data.layout.walls )
return possibleActions
getLegalActions = staticmethod( getLegalActions )
def getOriginalLegalActions( state, ghostIndex ):
"""
Ghosts cannot stop, and cannot turn around unless they
reach a dead end, but can turn 90 degrees at intersections.
"""
conf = state.getGhostState( ghostIndex ).configuration
possibleActions = Actions.getPossibleActions( conf, state.data.layout.walls )
reverse = Actions.reverseDirection( conf.direction )
if Directions.STOP in possibleActions:
possibleActions.remove( Directions.STOP )
if reverse in possibleActions and len( possibleActions ) > 1:
possibleActions.remove( reverse )
return possibleActions
getOriginalLegalActions = staticmethod( getOriginalLegalActions )
def applyAction( state, action, ghostIndex):
legal = GhostRules.getLegalActions( state, ghostIndex )
if action not in legal:
raise Exception("Illegal ghost action " + str(action))
ghostState = state.data.agentStates[ghostIndex]
speed = GhostRules.GHOST_SPEED
if ghostState.scaredTimer > 0: speed /= 2.0
vector = Actions.directionToVector( action, speed )
ghostState.configuration = ghostState.configuration.generateSuccessor( vector )
applyAction = staticmethod( applyAction )
def decrementTimer( ghostState):
timer = ghostState.scaredTimer
if timer == 1:
ghostState.configuration.pos = nearestPoint( ghostState.configuration.pos )
ghostState.scaredTimer = max( 0, timer - 1 )
decrementTimer = staticmethod( decrementTimer )
def checkDeath( state, agentIndex):
pacmanPosition = state.getPacmanPosition()
if agentIndex == 0: # Pacman just moved; Anyone can kill him
for index in range( 1, len( state.data.agentStates ) ):
ghostState = state.data.agentStates[index]
ghostPosition = ghostState.configuration.getPosition()
if GhostRules.canKill( pacmanPosition, ghostPosition ):
GhostRules.collide( state, ghostState, index )
else:
ghostState = state.data.agentStates[agentIndex]
ghostPosition = ghostState.configuration.getPosition()
if GhostRules.canKill( pacmanPosition, ghostPosition ):
GhostRules.collide( state, ghostState, agentIndex )
checkDeath = staticmethod( checkDeath )
def collide( state, ghostState, agentIndex):
if ghostState.scaredTimer > 0:
state.data.scoreChange += 200
GhostRules.placeGhost(state, ghostState)
ghostState.scaredTimer = 0
# Added for first-person
state.data._eaten[agentIndex] = True
else:
if not state.data._win:
state.data.scoreChange += LOSE_SCORE
state.data._lose = True
collide = staticmethod( collide )
def canKill( pacmanPosition, ghostPosition ):
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
canKill = staticmethod( canKill )
def placeGhost(state, ghostState):
ghostState.configuration = ghostState.start
placeGhost = staticmethod( placeGhost )
#############################
# FRAMEWORK TO START A GAME #
#############################
def default(str):
return str + ' [Default: %default]'
def parseAgentArgs(str):
if str == None: return {}
pieces = str.split(',')
opts = {}
for p in pieces:
if '=' in p:
key, val = p.split('=')
else:
key,val = p, 1
opts[key] = val
return opts
def readCommand( argv ):
"""
Processes the command used to run pacman from the command line.
"""
from optparse import OptionParser
usageStr = """
USAGE: python pacman.py <options>
EXAMPLES: (1) python pacman.py
- starts an interactive game
(2) python pacman.py --layout smallClassic --zoom 2
OR python pacman.py -l smallClassic -z 2
- starts an interactive game on a smaller board, zoomed in
"""
parser = OptionParser(usageStr)
parser.add_option('-n', '--numGames', dest='numGames', type='int',
help=default('the number of GAMES to play'), metavar='GAMES', default=1)
parser.add_option('-l', '--layout', dest='layout',
help=default('the LAYOUT_FILE from which to load the map layout'),
metavar='LAYOUT_FILE', default='mediumClassic')
parser.add_option('-p', '--pacman', dest='pacman',
help=default('the agent TYPE in the pacmanAgents module to use'),
metavar='TYPE', default='KeyboardAgent')
parser.add_option('-t', '--textGraphics', action='store_true', dest='textGraphics',
help='Display output as text only', default=False)
parser.add_option('-q', '--quietTextGraphics', action='store_true', dest='quietGraphics',
help='Generate minimal output and no graphics', default=False)
parser.add_option('-g', '--ghosts', dest='ghost',
help=default('the ghost agent TYPE in the ghostAgents module to use'),
metavar = 'TYPE', default='RandomGhost')
parser.add_option('-k', '--numghosts', type='int', dest='numGhosts',
help=default('The maximum number of ghosts to use'), default=4)
parser.add_option('-z', '--zoom', type='float', dest='zoom',
help=default('Zoom the size of the graphics window'), default=1.0)
parser.add_option('-f', '--fixRandomSeed', action='store_true', dest='fixRandomSeed',
help='Fixes the random seed to always play the same game', default=False)
parser.add_option('-r', '--recordActions', action='store_true', dest='record',
help='Writes game histories to a file (named by the time they were played)', default=False)
parser.add_option('--replay', dest='gameToReplay',
help='A recorded game file (pickle) to replay', default=None)
parser.add_option('-a','--agentArgs',dest='agentArgs',
help='Comma separated values sent to agent. e.g. "opt1=val1,opt2,opt3=val3"')
parser.add_option('-x', '--numTraining', dest='numTraining', type='int',
help=default('How many episodes are training (suppresses output)'), default=0)
parser.add_option('--frameTime', dest='frameTime', type='float',
help=default('Time to delay between frames; <0 means keyboard'), default=0.1)
parser.add_option('-c', '--catchExceptions', action='store_true', dest='catchExceptions',
help='Turns on exception handling and timeouts during games', default=False)
parser.add_option('--timeout', dest='timeout', type='int',
help=default('Maximum length of time an agent can spend computing in a single game'), default=30)
parser.add_option('--gameMenu', action='store_true', dest='gameMenu',
help='Add the game menu', default=False)
options, otherjunk = parser.parse_args(argv)
if len(otherjunk) != 0:
raise Exception('Command line input not understood: ' + str(otherjunk))
args = dict()
# Fix the random seed
if options.fixRandomSeed: random.seed('cs188')
# Choose a layout
args['layout'] = layout.getLayout( options.layout )
if args['layout'] == None: raise Exception("The layout " + options.layout + " cannot be found")
# Choose a Pacman agent
noKeyboard = options.gameToReplay == None and (options.textGraphics or options.quietGraphics)
pacmanType = loadAgent(options.pacman, noKeyboard)
agentOpts = parseAgentArgs(options.agentArgs)
if options.numTraining > 0:
args['numTraining'] = options.numTraining
if 'numTraining' not in agentOpts: agentOpts['numTraining'] = options.numTraining
pacman = pacmanType(**agentOpts) # Instantiate Pacman with agentArgs
args['pacman'] = pacman
# Don't display training games
if 'numTrain' in agentOpts:
options.numQuiet = int(agentOpts['numTrain'])
options.numIgnore = int(agentOpts['numTrain'])
# Choose a ghost agent
if options.ghost == "KeyboardGhost":
ghostType = loadAgent(options.ghost, noKeyboard)
args['keyboardGhosts'] = [ghostType( i+1 ) for i in range( options.numGhosts )]
ghostType = loadAgent("KeyboardTrainingGhost", noKeyboard)
args['ghosts'] = [ghostType( i+1 ) for i in range( options.numGhosts )]
else:
ghostType = loadAgent(options.ghost, noKeyboard)
args['ghosts'] = [ghostType( i+1 ) for i in range( options.numGhosts )]
# Choose a display format
if options.quietGraphics:
import textDisplay
args['display'] = textDisplay.NullGraphics()
elif options.textGraphics:
import textDisplay
textDisplay.SLEEP_TIME = options.frameTime
args['display'] = textDisplay.PacmanGraphics()
else:
import graphicsDisplay
args['display'] = graphicsDisplay.PacmanGraphics(options.zoom, frameTime = options.frameTime)
args['numGames'] = options.numGames
args['record'] = options.record
args['catchExceptions'] = options.catchExceptions
args['timeout'] = options.timeout
args['gameMenu'] = options.gameMenu
# Special case: recorded games don't use the runGames method or args structure
if options.gameToReplay != None:
print 'Replaying recorded game %s.' % options.gameToReplay
import cPickle
f = open(options.gameToReplay)
try: recorded = cPickle.load(f)
finally: f.close()
recorded['display'] = args['display']
replayGame(**recorded)
sys.exit(0)
return args
def loadAgent(pacman, nographics):
# Looks through all pythonPath Directories for the right module,
pythonPathStr = os.path.expandvars("$PYTHONPATH")
if pythonPathStr.find(';') == -1:
pythonPathDirs = pythonPathStr.split(':')
else:
pythonPathDirs = pythonPathStr.split(';')
pythonPathDirs.append('.')
for moduleDir in pythonPathDirs:
if not os.path.isdir(moduleDir): continue
moduleNames = [f for f in os.listdir(moduleDir) if f.endswith('gents.py')]
for modulename in moduleNames:
try:
module = __import__(modulename[:-3])
except ImportError:
continue
if pacman in dir(module):
if nographics and modulename == 'keyboardAgents.py':
raise Exception('Using the keyboard requires graphics (not text display)')
return getattr(module, pacman)
raise Exception('The agent ' + pacman + ' is not specified in any *Agents.py.')
def replayGame( layout, actions, display ):
import pacmanAgents, ghostAgents
rules = ClassicGameRules()
agents = [pacmanAgents.GreedyAgent()] + [ghostAgents.RandomGhost(i+1) for i in range(layout.getNumGhosts())]
game = rules.newGame( layout, agents[0], agents[1:], display )
state = game.state
display.initialize(state.data)
for action in actions:
# Execute the action
state = state.generateSuccessor( *action )
# Change the display
display.update( state.data )
# Allow for game specific conditions (winning, losing, etc.)
rules.process(state, game)
display.finish()
def runHistoryGames(layout, pacman, ghosts, display, record, catchExceptions, timeout, keyboardGhosts):
n_games = 3
# n juegos sin entrenamiento
games, display = runGames(layout, pacman, ghosts, display, n_games, record, 0, catchExceptions, timeout, keyboardGhosts)
# n juegos con entrenamiento medio
pacman.setWeights({'ghost-1-distance': -0.2727409769903002, 'closest-food': -1.3621110078124379, 'bias': -63.15332754401044, 'ghost-2-distance': -0.3484213977577863, '#-of-ghosts-1-step-away': -455.4892921836355, 'eats-food': 165.53617208004533})
games, display = runGames(layout, pacman, ghosts, display, n_games+1, record, 1, catchExceptions, timeout, keyboardGhosts)
# n juegos con entrenamiento alto
pacman.setWeights({'ghost-1-distance': 1.7875370795732135, 'closest-food': -10.779379630972068, 'bias': 151.09488651951617, 'ghost-2-distance': 0.33101683742778343, '#-of-ghosts-1-step-away': -1133.2887795678223})
games, display = runGames(layout, pacman, ghosts, display, n_games+1, record, 1, catchExceptions, timeout, keyboardGhosts)
def runGamesWithMenu( layout, pacman, ghosts, display, numGames, record, numTraining = 0, catchExceptions=False, timeout=30, keyboardGhosts=[], savedDisplay=None ):
import graphicsUtils
import __main__
import time
__main__.__dict__['_display'] = display
max_players = len(ghosts)
#mid_wights = {'ghost-1-distance': 7.505496605864388, 'closest-food': -40.75997789941222, '#-of-safe-intersections': 10.690708333578042, 'bias': 55.10377398236568, 'ghost-2-distance': 6.101402173364152, '#-of-ghosts-1-step-away': -2604.0274454689475, 'eats-food': 349.29952193184727}
#pacman.setWeights(mid_wights)
while True:
# Pantalla inicial, esperar a que se seleccione la cantidad de jugadores.
# La cantidad maxima estara dada por max_players
# Display ya esta inicializado con graphicsDisplay
# Con la opcion --frameTime -1, se puede hacer por frames
# Activamos mostrar la pantalla de entrenamiento durante el mismo
display.showTrainingScreen = True
# Iniciamos la ventana
display.make_window(layout.width, layout.height)
# Presentamos pantalla de inicio
display.initialize(None, "start")
print display.selection
if display.selection == 1: # Historia
runHistoryGames(layout, pacman, ghosts, display, record, catchExceptions, timeout, keyboardGhosts)
if display.selection == 2: # Infinito
# 100 juegos con entrenamiento en alto
#pacman.setWeights({'ghost-1-distance': 12.94359242827336, 'closest-food': -52.46911132365448, '#-of-safe-intersections': 7.850194983873335, 'bias': 406.81171059627815, 'ghost-2-distance': 8.38662059308811, '#-of-ghosts-1-step-away': -2736.7332471165696})
#pacman.setWeights({'ghost-1-distance': 1.7875370795732135, 'closest-food': -10.779379630972068, 'bias': 151.09488651951617, 'ghost-2-distance': 0.33101683742778343, '#-of-ghosts-1-step-away': -1133.2887795678223})
pacman.setWeights({'ghost-1-distance': 1.202518331355906, 'closest-food': -17.52317063612606, 'bias': 244.92598082600026, 'ghost-2-distance': 0.39391543570184373, '#-of-ghosts-1-step-away': -1709.0923916869842})
games, display = runGames(layout, pacman, ghosts, display, 10, record, 0, catchExceptions, timeout, keyboardGhosts)
if display.selection == 3: # Demo
# 10 juegos con entrenamiento alto, modo automatico
#pacman.setWeights({'ghost-1-distance': 7.90677231488944, 'closest-food': -8.138224422237991, 'bias': 138.95803700868277, 'ghost-2-distance': 0.06922797164020886, '#-of-ghosts-1-step-away': -2987.7748161856716, 'eats-food': 346.1886947796438})
#pacman.setWeights({'ghost-1-distance': 1.7875370795732135, 'closest-food': -10.779379630972068, 'bias': 151.09488651951617, 'ghost-2-distance': 0.33101683742778343, '#-of-ghosts-1-step-away': -1133.2887795678223})
pacman.setWeights({'ghost-1-distance': 1.202518331355906, 'closest-food': -17.52317063612606, 'bias': 244.92598082600026, 'ghost-2-distance': 0.39391543570184373, '#-of-ghosts-1-step-away': -1709.0923916869842})
games, display = runGames(layout, pacman, ghosts, display, 100, record, 0, catchExceptions, timeout, [])
# Una vez seleccionados damos 1 juego de practica y 3 juegos sin entrenamiento
#pacman.setWeights({'ghost-1-distance': 18.667905261805245, 'closest-food': -84.14869086938502, '#-of-safe-intersections': 8.381229445965635, 'bias': 376.62628903913554, 'ghost-2-distance': 7.797186841612915, '#-of-ghosts-1-step-away': -3183.3103376329946})
# Entrenamos 20 (?) epocas
# 3 juegos mas con dificultad media
#print "Pacman is training..."
#games, display = runGames(layout, pacman, ghosts, display, 21, record, 20, catchExceptions, timeout, keyboardGhosts, display)
# Entrenamos 100 (?) epocas
# 3 juegos mas con dificultad dificil
#print "Pacman is training..."
#games, display = runGames(layout, pacman, ghosts, display, 101, record, 100, catchExceptions, timeout, keyboardGhosts, display)
# Fin del juego, presentamos tabla de score para anotar un nombre.
# Esto en vez de una tabla podria ser el score minimo del dia
# En caso de un score minimo nuevo, se anotarian los mails del equipo en una planilla
# Habria que guardar este score en un archivo o poder darlo por parametro en caso de perdida
# Podriamos mostrar pantallas distintas para el caso de que el min_score sea superado y otra para el caso en el que no lo sea
# Luego de un tiempo de mostrar el score final, volveriamos a la pantalla inicial
# TODO: Habria que guardar la matriz de estados del Pacman entrenado para:
# 1. Poder entrenarlo con muchas mas iteraciones
# 2. Evitar el tiempo de entrenamiento
# En el caso de hacerlo las pantallas de entrenamiento tendrian un simple fin humoristico
# TODO: Esperar una tecla al comienzo de cada juego?
def runGames( layout, pacman, ghosts, display, numGames, record, numTraining = 0, catchExceptions=False, timeout=30, keyboardGhosts=[], savedDisplay=None ):
import __main__
import time
__main__.__dict__['_display'] = display
rules = ClassicGameRules(timeout)
games = []
for i in range( numGames ):
game = None
beQuiet = i < numTraining
if beQuiet:
# Suppress output and graphics
import textDisplay
gameDisplay = textDisplay.NullGraphics()
rules.quiet = True
if hasattr(display, 'showTrainingScreen') and display.showTrainingScreen:
display.initialize(None, "training")
else:
if savedDisplay is None:
gameDisplay = display
else:
gameDisplay = savedDisplay
rules.quiet = False
# If there's keyboard ghosts and not in training mode
if len(keyboardGhosts) > 0 and not beQuiet:
#for i in range(len(keyboardGhosts)):
# keyboardGhosts[i].init()
#ghostType = loadAgent("KeyboardGhost", False)
#keyboardGhosts = [ghostType( i+1 ) for i in range( len(keyboardGhosts) )]
game = rules.newGame( layout, pacman, keyboardGhosts, gameDisplay, beQuiet, catchExceptions)
else:
game = rules.newGame( layout, pacman, ghosts, gameDisplay, beQuiet, catchExceptions)
if beQuiet:
game.run()
else:
if savedDisplay is None:
savedDisplay = game.run()
else:
savedDisplay = game.run(savedDisplay)
if game.gameQuit:
return (games, display)
# Show win / loss message
if hasattr(display, 'showTrainingScreen'):
from graphicsUtils import wait_for_keys
display.showResultMessage(not game.state.isWin())
keys = []
if len(keyboardGhosts) > 0:
while 'Return' not in keys:
keys = wait_for_keys()
else:
time.sleep(1)
display.hideResultMessage()
if not beQuiet: games.append(game)
if record:
import time, cPickle
fname = ('recorded-game-%d' % (i + 1)) + '-'.join([str(t) for t in time.localtime()[1:6]])
f = file(fname, 'w')
components = {'layout': layout, 'actions': game.moveHistory}
cPickle.dump(components, f)
f.close()
if (numGames-numTraining) > 0:
scores = [game.state.getScore() for game in games]
wins = [game.state.isWin() for game in games]
progress = [float(game.state.getNumFood()) / rules.initialState.getNumFood() for game in games]
winRate = wins.count(True)/ float(len(wins))
print 'Average Score:', sum(scores) / float(len(scores))
print 'Scores: ', ', '.join([str(score) for score in scores])
print 'Win Rate: %d/%d (%.2f)' % (wins.count(True), len(wins), winRate)
print 'Progress Rate: %.2f %%' % ((sum(progress)/len(progress))*100)
print 'Record: ', ', '.join([ ['Loss', 'Win'][int(w)] for w in wins])
return (games, display)
if __name__ == '__main__':
"""
The main function called when pacman.py is run
from the command line:
> python pacman.py
See the usage string for more details.
> python pacman.py --help
"""
args = readCommand( sys.argv[1:] ) # Get game components based on input
if args['gameMenu']:
args.pop('gameMenu')
runGamesWithMenu( **args )
else:
args.pop('gameMenu')
runGames( **args )
# import cProfile
# cProfile.run("runGames( **args )")
pass