-
Notifications
You must be signed in to change notification settings - Fork 41
/
graphicsGridworldDisplay.py
348 lines (291 loc) · 13.2 KB
/
graphicsGridworldDisplay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# graphicsGridworldDisplay.py
# ---------------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
import util
from graphicsUtils import *
class GraphicsGridworldDisplay:
def __init__(self, gridworld, size=120, speed=1.0):
self.gridworld = gridworld
self.size = size
self.speed = speed
def start(self):
setup(self.gridworld, size=self.size)
def pause(self):
wait_for_keys()
def displayValues(self, agent, currentState = None, message = 'Agent Values'):
values = util.Counter()
policy = {}
states = self.gridworld.getStates()
for state in states:
values[state] = agent.getValue(state)
policy[state] = agent.getPolicy(state)
drawValues(self.gridworld, values, policy, currentState, message)
sleep(0.05 / self.speed)
def displayNullValues(self, currentState = None, message = ''):
values = util.Counter()
#policy = {}
states = self.gridworld.getStates()
for state in states:
values[state] = 0.0
#policy[state] = agent.getPolicy(state)
drawNullValues(self.gridworld, currentState,'')
# drawValues(self.gridworld, values, policy, currentState, message)
sleep(0.05 / self.speed)
def displayQValues(self, agent, currentState = None, message = 'Agent Q-Values'):
qValues = util.Counter()
states = self.gridworld.getStates()
for state in states:
for action in self.gridworld.getPossibleActions(state):
qValues[(state, action)] = agent.getQValue(state, action)
drawQValues(self.gridworld, qValues, currentState, message)
sleep(0.05 / self.speed)
BACKGROUND_COLOR = formatColor(0,0,0)
EDGE_COLOR = formatColor(1,1,1)
OBSTACLE_COLOR = formatColor(0.5,0.5,0.5)
TEXT_COLOR = formatColor(1,1,1)
MUTED_TEXT_COLOR = formatColor(0.7,0.7,0.7)
LOCATION_COLOR = formatColor(0,0,1)
WINDOW_SIZE = -1
GRID_SIZE = -1
GRID_HEIGHT = -1
MARGIN = -1
def setup(gridworld, title = "Gridworld Display", size = 120):
global GRID_SIZE, MARGIN, SCREEN_WIDTH, SCREEN_HEIGHT, GRID_HEIGHT
grid = gridworld.grid
WINDOW_SIZE = size
GRID_SIZE = size
GRID_HEIGHT = grid.height
MARGIN = GRID_SIZE * 0.75
screen_width = (grid.width - 1) * GRID_SIZE + MARGIN * 2
screen_height = (grid.height - 0.5) * GRID_SIZE + MARGIN * 2
begin_graphics(screen_width,
screen_height,
BACKGROUND_COLOR, title=title)
def drawNullValues(gridworld, currentState = None, message = ''):
grid = gridworld.grid
blank()
for x in range(grid.width):
for y in range(grid.height):
state = (x, y)
gridType = grid[x][y]
isExit = (str(gridType) != gridType)
isCurrent = (currentState == state)
if gridType == '#':
drawSquare(x, y, 0, 0, 0, None, None, True, False, isCurrent)
else:
drawNullSquare(gridworld.grid, x, y, False, isExit, isCurrent)
pos = to_screen(((grid.width - 1.0) / 2.0, - 0.8))
text( pos, TEXT_COLOR, message, "Courier", -32, "bold", "c")
def drawValues(gridworld, values, policy, currentState = None, message = 'State Values'):
grid = gridworld.grid
blank()
valueList = [values[state] for state in gridworld.getStates()] + [0.0]
minValue = min(valueList)
maxValue = max(valueList)
for x in range(grid.width):
for y in range(grid.height):
state = (x, y)
gridType = grid[x][y]
isExit = (str(gridType) != gridType)
isCurrent = (currentState == state)
if gridType == '#':
drawSquare(x, y, 0, 0, 0, None, None, True, False, isCurrent)
else:
value = values[state]
action = None
if policy != None and state in policy:
action = policy[state]
actions = gridworld.getPossibleActions(state)
if action not in actions and 'exit' in actions:
action = 'exit'
valString = '%.2f' % value
drawSquare(x, y, value, minValue, maxValue, valString, action, False, isExit, isCurrent)
pos = to_screen(((grid.width - 1.0) / 2.0, - 0.8))
text( pos, TEXT_COLOR, message, "Courier", -32, "bold", "c")
def drawQValues(gridworld, qValues, currentState = None, message = 'State-Action Q-Values'):
grid = gridworld.grid
blank()
stateCrossActions = [[(state, action) for action in gridworld.getPossibleActions(state)] for state in gridworld.getStates()]
qStates = reduce(lambda x,y: x+y, stateCrossActions, [])
qValueList = [qValues[(state, action)] for state, action in qStates] + [0.0]
minValue = min(qValueList)
maxValue = max(qValueList)
for x in range(grid.width):
for y in range(grid.height):
state = (x, y)
gridType = grid[x][y]
isExit = (str(gridType) != gridType)
isCurrent = (currentState == state)
actions = gridworld.getPossibleActions(state)
if actions == None or len(actions) == 0:
actions = [None]
bestQ = max([qValues[(state, action)] for action in actions])
bestActions = [action for action in actions if qValues[(state, action)] == bestQ]
q = util.Counter()
valStrings = {}
for action in actions:
v = qValues[(state, action)]
q[action] += v
valStrings[action] = '%.2f' % v
if gridType == '#':
drawSquare(x, y, 0, 0, 0, None, None, True, False, isCurrent)
elif isExit:
action = 'exit'
value = q[action]
valString = '%.2f' % value
drawSquare(x, y, value, minValue, maxValue, valString, action, False, isExit, isCurrent)
else:
drawSquareQ(x, y, q, minValue, maxValue, valStrings, actions, isCurrent)
pos = to_screen(((grid.width - 1.0) / 2.0, - 0.8))
text( pos, TEXT_COLOR, message, "Courier", -32, "bold", "c")
def blank():
clear_screen()
def drawNullSquare(grid,x, y, isObstacle, isTerminal, isCurrent):
square_color = getColor(0, -1, 1)
if isObstacle:
square_color = OBSTACLE_COLOR
(screen_x, screen_y) = to_screen((x, y))
square( (screen_x, screen_y),
0.5* GRID_SIZE,
color = square_color,
filled = 1,
width = 1)
square( (screen_x, screen_y),
0.5* GRID_SIZE,
color = EDGE_COLOR,
filled = 0,
width = 3)
if isTerminal and not isObstacle:
square( (screen_x, screen_y),
0.4* GRID_SIZE,
color = EDGE_COLOR,
filled = 0,
width = 2)
text( (screen_x, screen_y),
TEXT_COLOR,
str(grid[x][y]),
"Courier", -24, "bold", "c")
text_color = TEXT_COLOR
if not isObstacle and isCurrent:
circle( (screen_x, screen_y), 0.1*GRID_SIZE, LOCATION_COLOR, fillColor=LOCATION_COLOR )
# if not isObstacle:
# text( (screen_x, screen_y), text_color, valStr, "Courier", 24, "bold", "c")
def drawSquare(x, y, val, min, max, valStr, action, isObstacle, isTerminal, isCurrent):
square_color = getColor(val, min, max)
if isObstacle:
square_color = OBSTACLE_COLOR
(screen_x, screen_y) = to_screen((x, y))
square( (screen_x, screen_y),
0.5* GRID_SIZE,
color = square_color,
filled = 1,
width = 1)
square( (screen_x, screen_y),
0.5* GRID_SIZE,
color = EDGE_COLOR,
filled = 0,
width = 3)
if isTerminal and not isObstacle:
square( (screen_x, screen_y),
0.4* GRID_SIZE,
color = EDGE_COLOR,
filled = 0,
width = 2)
if action == 'north':
polygon( [(screen_x, screen_y - 0.45*GRID_SIZE), (screen_x+0.05*GRID_SIZE, screen_y-0.40*GRID_SIZE), (screen_x-0.05*GRID_SIZE, screen_y-0.40*GRID_SIZE)], EDGE_COLOR, filled = 1, smoothed = False)
if action == 'south':
polygon( [(screen_x, screen_y + 0.45*GRID_SIZE), (screen_x+0.05*GRID_SIZE, screen_y+0.40*GRID_SIZE), (screen_x-0.05*GRID_SIZE, screen_y+0.40*GRID_SIZE)], EDGE_COLOR, filled = 1, smoothed = False)
if action == 'west':
polygon( [(screen_x-0.45*GRID_SIZE, screen_y), (screen_x-0.4*GRID_SIZE, screen_y+0.05*GRID_SIZE), (screen_x-0.4*GRID_SIZE, screen_y-0.05*GRID_SIZE)], EDGE_COLOR, filled = 1, smoothed = False)
if action == 'east':
polygon( [(screen_x+0.45*GRID_SIZE, screen_y), (screen_x+0.4*GRID_SIZE, screen_y+0.05*GRID_SIZE), (screen_x+0.4*GRID_SIZE, screen_y-0.05*GRID_SIZE)], EDGE_COLOR, filled = 1, smoothed = False)
text_color = TEXT_COLOR
if not isObstacle and isCurrent:
circle( (screen_x, screen_y), 0.1*GRID_SIZE, outlineColor=LOCATION_COLOR, fillColor=LOCATION_COLOR )
if not isObstacle:
text( (screen_x, screen_y), text_color, valStr, "Courier", -30, "bold", "c")
def drawSquareQ(x, y, qVals, minVal, maxVal, valStrs, bestActions, isCurrent):
(screen_x, screen_y) = to_screen((x, y))
center = (screen_x, screen_y)
nw = (screen_x-0.5*GRID_SIZE, screen_y-0.5*GRID_SIZE)
ne = (screen_x+0.5*GRID_SIZE, screen_y-0.5*GRID_SIZE)
se = (screen_x+0.5*GRID_SIZE, screen_y+0.5*GRID_SIZE)
sw = (screen_x-0.5*GRID_SIZE, screen_y+0.5*GRID_SIZE)
n = (screen_x, screen_y-0.5*GRID_SIZE+5)
s = (screen_x, screen_y+0.5*GRID_SIZE-5)
w = (screen_x-0.5*GRID_SIZE+5, screen_y)
e = (screen_x+0.5*GRID_SIZE-5, screen_y)
actions = qVals.keys()
for action in actions:
wedge_color = getColor(qVals[action], minVal, maxVal)
if action == 'north':
polygon( (center, nw, ne), wedge_color, filled = 1, smoothed = False)
#text(n, text_color, valStr, "Courier", 8, "bold", "n")
if action == 'south':
polygon( (center, sw, se), wedge_color, filled = 1, smoothed = False)
#text(s, text_color, valStr, "Courier", 8, "bold", "s")
if action == 'east':
polygon( (center, ne, se), wedge_color, filled = 1, smoothed = False)
#text(e, text_color, valStr, "Courier", 8, "bold", "e")
if action == 'west':
polygon( (center, nw, sw), wedge_color, filled = 1, smoothed = False)
#text(w, text_color, valStr, "Courier", 8, "bold", "w")
square( (screen_x, screen_y),
0.5* GRID_SIZE,
color = EDGE_COLOR,
filled = 0,
width = 3)
line(ne, sw, color = EDGE_COLOR)
line(nw, se, color = EDGE_COLOR)
if isCurrent:
circle( (screen_x, screen_y), 0.1*GRID_SIZE, LOCATION_COLOR, fillColor=LOCATION_COLOR )
for action in actions:
text_color = TEXT_COLOR
if qVals[action] < max(qVals.values()): text_color = MUTED_TEXT_COLOR
valStr = ""
if action in valStrs:
valStr = valStrs[action]
h = -20
if action == 'north':
#polygon( (center, nw, ne), wedge_color, filled = 1, smooth = 0)
text(n, text_color, valStr, "Courier", h, "bold", "n")
if action == 'south':
#polygon( (center, sw, se), wedge_color, filled = 1, smooth = 0)
text(s, text_color, valStr, "Courier", h, "bold", "s")
if action == 'east':
#polygon( (center, ne, se), wedge_color, filled = 1, smooth = 0)
text(e, text_color, valStr, "Courier", h, "bold", "e")
if action == 'west':
#polygon( (center, nw, sw), wedge_color, filled = 1, smooth = 0)
text(w, text_color, valStr, "Courier", h, "bold", "w")
def getColor(val, minVal, max):
r, g = 0.0, 0.0
if val < 0 and minVal < 0:
r = val * 0.65 / minVal
if val > 0 and max > 0:
g = val * 0.65 / max
return formatColor(r,g,0.0)
def square(pos, size, color, filled, width):
x, y = pos
dx, dy = size, size
return polygon([(x - dx, y - dy), (x - dx, y + dy), (x + dx, y + dy), (x + dx, y - dy)], outlineColor=color, fillColor=color, filled=filled, width=width, smoothed=False)
def to_screen(point):
( gamex, gamey ) = point
x = gamex*GRID_SIZE + MARGIN
y = (GRID_HEIGHT - gamey - 1)*GRID_SIZE + MARGIN
return ( x, y )
def to_grid(point):
(x, y) = point
x = int ((y - MARGIN + GRID_SIZE * 0.5) / GRID_SIZE)
y = int ((x - MARGIN + GRID_SIZE * 0.5) / GRID_SIZE)
print point, "-->", (x, y)
return (x, y)