How to ace on a custom CIFAR-100 dataset (CS543 UIUC)
My implementation in wrn.py
In autoaugment.py
, there are 25 subpolicies trained from a reduced CIFAR-10 dataset, we use those subpolicies in our CIFAR-100 training.
Implementation ported from https://github.com/DeepVoltaire/AutoAugment
My implementation in cutout.py
random_erasing.py
contains the original author's implementation https://github.com/zhunzhong07/Random-Erasing
Default script will run WRN-28-10: wide residual network with depth=28 and k=10 (widen factor)
Batch size: 128
Learning rate settings:
epoch | learning rate | weight decay | Optimizer | Momentum | Nesterov |
---|---|---|---|---|---|
0 ~ 60 | 0.1 | 0.0005 | Momentum | 0.9 | true |
61 ~ 120 | 0.02 | 0.0005 | Momentum | 0.9 | true |
121 ~ 160 | 0.004 | 0.0005 | Momentum | 0.9 | true |
161 ~ 200 | 0.0008 | 0.0005 | Momentum | 0.9 | true |