Skip to content

How to ace on a custom CIFAR-100 dataset (CS543 UIUC)

License

Notifications You must be signed in to change notification settings

ra1nty/CIFAR-100-CS543

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CIFAR-100-CS543

How to ace on a custom CIFAR-100 dataset (CS543 UIUC)

WRNs:

My implementation in wrn.py

AutoAugment:

In autoaugment.py, there are 25 subpolicies trained from a reduced CIFAR-10 dataset, we use those subpolicies in our CIFAR-100 training.

Implementation ported from https://github.com/DeepVoltaire/AutoAugment

Cutout:

My implementation in cutout.py

RandomErasing:

random_erasing.py contains the original author's implementation https://github.com/zhunzhong07/Random-Erasing

Implementation Details

Default script will run WRN-28-10: wide residual network with depth=28 and k=10 (widen factor)
Batch size: 128

Learning rate settings:

epoch learning rate weight decay Optimizer Momentum Nesterov
0 ~ 60 0.1 0.0005 Momentum 0.9 true
61 ~ 120 0.02 0.0005 Momentum 0.9 true
121 ~ 160 0.004 0.0005 Momentum 0.9 true
161 ~ 200 0.0008 0.0005 Momentum 0.9 true

About

How to ace on a custom CIFAR-100 dataset (CS543 UIUC)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages