diff --git a/.Rbuildignore b/.Rbuildignore index 21385f2..716531b 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -35,3 +35,4 @@ vignettes/twdtw03-speed.Rmd ^data/mod13q1/ ^data/mod13q1.db ^CRAN-RELEASE$ +^CRAN-SUBMISSION$ diff --git a/.gitignore b/.gitignore index 2dc97f7..1e046a7 100644 --- a/.gitignore +++ b/.gitignore @@ -26,3 +26,4 @@ Makefile dtw_result_subarea_250m_1_2017-09-01.tif /doc/ /Meta/ +CRAN-SUBMISSION diff --git a/DESCRIPTION b/DESCRIPTION index 516c5b0..edb5e33 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,8 +1,8 @@ Package: dtwSat Type: Package Title: Time-Weighted Dynamic Time Warping for Satellite Image Time Series Analysis -Version: 0.2.8 -Date: 2022-10-11 +Version: 1.0.0 +Date: 2023-06-30 Authors@R: c(person(given = "Victor", family = "Maus", @@ -71,7 +71,7 @@ LazyData: true VignetteBuilder: knitr Encoding: UTF-8 -RoxygenNote: 7.2.1 +RoxygenNote: 7.2.3 Collate: 'class-crossValidation.R' 'class-twdtwRaster.R' diff --git a/NEWS.md b/NEWS.md index 4696929..9c7a3f0 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,7 @@ +# dtwSat v1.0.0 + +* Major release: drops dependencies on rgdal and rgeos + # dtwSat v0.2.8 * Adds faster implementation of TWDTW for logistic weight function diff --git a/R/twdtw_reduce_time.R b/R/twdtw_reduce_time.R index f093430..db1fbe7 100644 --- a/R/twdtw_reduce_time.R +++ b/R/twdtw_reduce_time.R @@ -51,7 +51,7 @@ #' rbenchmark::benchmark( #' legacy_twdtw = twdtwClassify(twdtwApply(x = tw_ts, y = tw_patt, weight.fun = log_fun), #' from = from, to = to, by = by)[[1]], -#' fast_twdtw = twdtwReduceTime(x = mn_ts, y = mn_patt, rom = from, to = to, by = by) +#' fast_twdtw = twdtwReduceTime(x = mn_ts, y = mn_patt, from = from, to = to, by = by) #' ) #' } #' diff --git a/cran-comments.md b/cran-comments.md index b2d0e60..c1c1a05 100644 --- a/cran-comments.md +++ b/cran-comments.md @@ -9,12 +9,16 @@ rhub::check_for_cran(check_args = '--as-cran') rhub::check_for_cran(check_args = '--as-cran', valgrind = TRUE) -* Local Ubuntu 22.04.1 LTS x86_64-pc-linux-gnu (64-bit), R 4.2.1 (2022-06-23) +* Local Ubuntu 22.04.1 LTS x86_64-pc-linux-gnu (64-bit), R 4.3.0 (2023-04-21) devtools::check(args = '--as-cran') devtools::submit_cran() ## REVIEWS +# v1.0.0 + +* This is a major review that removes obsolete package dependencies + # v0.2.8 * Fixes errors from https://cran.r-project.org/web/checks/check_results_dtwSat.html diff --git a/examples/.gitignore b/examples/.gitignore new file mode 100644 index 0000000..0994e6f --- /dev/null +++ b/examples/.gitignore @@ -0,0 +1,3 @@ +create_patterns.R +dtwsat_gdalcubes +parallel_twdtw_gdalcubes.R diff --git a/examples/benchmark_legacy.R b/examples/benchmark_legacy.R index 0a4a4b1..cd4b3f0 100644 --- a/examples/benchmark_legacy.R +++ b/examples/benchmark_legacy.R @@ -8,11 +8,11 @@ to = "2017-08-31" by = "12 month" # S4 objects for original implementation -tw_patt = readRDS(system.file("lucc_MT/patterns/patt.rds", package = "dtwSat")) -tw_ts = twdtwTimeSeries(MOD13Q1.ts) +tw_patt = subset(readRDS(system.file("lucc_MT/patterns/patt.rds", package = "dtwSat")), labels = "Soy_Cotton") +tw_ts = twdtwTimeSeries(MOD13Q1.ts) # Table from csv for legacy version -mn_patt <- lapply(dir(system.file("lucc_MT/patterns", package = "dtwSat"), pattern = ".csv$", full.names = TRUE), read.csv, stringsAsFactors = FALSE) +mn_patt <- lapply(dir(system.file("lucc_MT/patterns", package = "dtwSat"), pattern = ".csv$", full.names = TRUE), read.csv, stringsAsFactors = FALSE)[12] mn_ts <- read.csv(system.file("reduce_time/ts_MODIS13Q1.csv", package = "dtwSat"), stringsAsFactors = FALSE) # Benchtmark @@ -21,7 +21,8 @@ rbenchmark::benchmark( t2_s4_fast = twdtwClassify(x = tw_ts, y = tw_patt, from = from, to = to, by = by, alpha = alpha, beta = beta, legacy = FALSE), t3_s4_fast_tw = twdtwClassify(x = tw_ts, y = tw_patt, from = from, to = to, by = by, alpha = alpha, beta = beta, legacy = FALSE), t4_s3_fast = twdtwClassify(x = mn_ts, y = mn_patt, from = from, to = to, by = by, alpha = alpha, beta = beta, time.window = FALSE), - t5_s3_fast_tw = twdtwClassify(x = mn_ts, y = mn_patt, from = from, to = to, by = by, alpha = alpha, beta = beta, time.window = TRUE) + t5_s3_fast_tw = twdtwClassify(x = mn_ts, y = mn_patt, from = from, to = to, by = by, alpha = alpha, beta = beta, time.window = TRUE), + replications = 100 ) plotClassification(twdtwClassify(x = tw_ts, y = tw_patt, from = from, to = to, by = by, alpha = alpha, beta = beta, legacy = FALSE, time.window = FALSE))