diff --git a/NAMESPACE b/NAMESPACE index 633818b..4c99aae 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -2,6 +2,7 @@ S3method(plot,twdtw_knn1) S3method(predict,twdtw_knn1) +S3method(print,twdtw_knn1) export(shift_dates) export(twdtw_knn1) import(ggplot2) diff --git a/R/train.R b/R/train.R index a40674c..2554894 100644 --- a/R/train.R +++ b/R/train.R @@ -169,6 +169,80 @@ twdtw_knn1 <- function(x, y, time_weight, cycle_length, time_scale, } +#' Print method for objects of class twdtw_knn1 +#' +#' This method provides a structured printout of the important components +#' of a `twdtw_knn1` object. +#' +#' @param x An object of class `twdtw_knn1`. +#' @param ... ignored +#' +#' @return Invisible `twdtw_knn1` object. +#' +#' @export +print.twdtw_knn1 <- function(x, ...) { + cat("\nModel of class 'twdtw_knn1'\n") + cat("-----------------------------\n") + + # Printing the call + cat("Call:\n") + print(x$call) + + # Printing the formula, if available + cat("\nFormula:\n") + print(x$formula) + + # Printing the data summary + cat("\nData:\n") + print(x$data) + + # Printing twdtw arguments + cat("\nTWDTW Arguments:\n") + pretty_arguments(x$twdtw_args) + + invisible(x) # Returns the object invisibly, so it doesn't print twice +} + +#' Print Pretty Arguments +#' +#' Display a list of arguments of a given function in a human-readable format. +#' +#' @param args A list of named arguments to display. +#' +#' @return Invisible NULL. The function is mainly used for its side effect of printing. +#' +#' @examples +#' \dontrun{ +#' pretty_arguments(formals(twdtw_knn1)) +#' } +#' +pretty_arguments <- function(args) { + + if (is.null(args)) { + cat("Arguments are missing.\n") + return(invisible(NULL)) + } + + for (name in names(args)) { + default_value <- args[[name]] + + if (is.symbol(default_value)) { + default_value <- as.character(default_value) + + } else if (is.null(default_value)) { + default_value <- "NULL" + + } else if (is.vector(default_value) && !is.null(names(default_value))) { + # Handle named vectors + values <- paste(names(default_value), default_value, sep = "=", collapse = ", ") + default_value <- paste0("c(", values, ")") + } + cat(paste0(" - ", name, ": ", default_value, "\n")) + } +} + + + #' Compute the Most Common Sampling Frequency across all observations #' #' This function calculates the most common difference between consecutive time points. diff --git a/man/pretty_arguments.Rd b/man/pretty_arguments.Rd new file mode 100644 index 0000000..a620918 --- /dev/null +++ b/man/pretty_arguments.Rd @@ -0,0 +1,23 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/train.R +\name{pretty_arguments} +\alias{pretty_arguments} +\title{Print Pretty Arguments} +\usage{ +pretty_arguments(args) +} +\arguments{ +\item{args}{A list of named arguments to display.} +} +\value{ +Invisible NULL. The function is mainly used for its side effect of printing. +} +\description{ +Display a list of arguments of a given function in a human-readable format. +} +\examples{ +\dontrun{ +pretty_arguments(formals(twdtw_knn1)) +} + +} diff --git a/man/print.twdtw_knn1.Rd b/man/print.twdtw_knn1.Rd new file mode 100644 index 0000000..c909f7a --- /dev/null +++ b/man/print.twdtw_knn1.Rd @@ -0,0 +1,20 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/train.R +\name{print.twdtw_knn1} +\alias{print.twdtw_knn1} +\title{Print method for objects of class twdtw_knn1} +\usage{ +\method{print}{twdtw_knn1}(x, ...) +} +\arguments{ +\item{x}{An object of class \code{twdtw_knn1}.} + +\item{...}{ignored} +} +\value{ +Invisible \code{twdtw_knn1} object. +} +\description{ +This method provides a structured printout of the important components +of a \code{twdtw_knn1} object. +} diff --git a/tests/testthat/test-twdtw_classify.R b/tests/testthat/test-twdtw_classify.R index efc4709..8dede52 100644 --- a/tests/testthat/test-twdtw_classify.R +++ b/tests/testthat/test-twdtw_classify.R @@ -31,7 +31,7 @@ system.time( time_weight = c(steepness = 0.1, midpoint = 50), formula = band ~ s(time)) ) - +m # Visualize model patterns plot(m) diff --git a/vignettes/landuse-mapping.Rmd b/vignettes/landuse-mapping.Rmd index 9049dab..66d8af0 100644 --- a/vignettes/landuse-mapping.Rmd +++ b/vignettes/landuse-mapping.Rmd @@ -82,6 +82,8 @@ twdtw_model <- twdtw_knn1(x = dc, time_scale = 'day', time_weight = c(steepness = 0.1, midpoint = 50), formula = band ~ s(time)) + +print(twdtw_model) ``` In addition to the mandatory arguments `x` (satellite data-cube) and `y` (training samples), @@ -102,9 +104,10 @@ Finally, we predict the land-use classes for each pixel location in the data-cub ```{r , echo = TRUE, eval = TRUE, warning = FALSE, message = FALSE} lu_map <- predict(dc, model = twdtw_model) +print(lu_map) ``` -And visualize the results using `ggplot`: +The 'time' dimension was reduced to a single map. We can now visualize it using `ggplot`: ```{r , echo = TRUE, eval = TRUE, warning = FALSE, message = FALSE} ggplot() +