diff --git a/vignettes/landuse-mapping.Rmd b/vignettes/landuse-mapping.Rmd index 1954cdd..9049dab 100644 --- a/vignettes/landuse-mapping.Rmd +++ b/vignettes/landuse-mapping.Rmd @@ -49,6 +49,8 @@ tif_files <- system.file("mato_grosso_brazil", package = "dtwSat") |> acquisition_date <- regmatches(tif_files, regexpr("[0-9]{8}", tif_files)) |> as.Date(format = "%Y%m%d") + +print(acquisition_date) ``` *Side note:* The date in the file name is not the true acquisition date for each pixel. @@ -63,6 +65,8 @@ dc <- read_stars(tif_files, RasterIO = list(bands = 1:6)) |> st_set_dimensions(3, c("EVI", "NDVI", "RED", "BLUE", "NIR", "MIR")) |> split(c("band")) + +print(dc) ``` Note that it's important to set the date for each observation using the parameter `along`. @@ -72,7 +76,7 @@ the 'band' dimension into attributes. This prepares the data for training the TW ## Create TWDTW-KNN1 model ```{r , echo = TRUE, eval = TRUE, warning = FALSE, message = FALSE} -twdtw_model <- twdtw_knn1(x = dc, +twdtw_model <- twdtw_knn1(x = dc, y = samples, cycle_length = 'year', time_scale = 'day',