-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathVacuum_stability_2d.nb
13093 lines (12865 loc) · 688 KB
/
Vacuum_stability_2d.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 704091, 13085]
NotebookOptionsPosition[ 693428, 12906]
NotebookOutlinePosition[ 693832, 12922]
CellTagsIndexPosition[ 693789, 12919]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Vacuum Stability", "Title",ExpressionUUID->"9eea522f-2076-468c-9ac3-fa52f9f0408e"],
Cell[CellGroupData[{
Cell["Basic Setup", "Section",ExpressionUUID->"d1f8ca25-7f88-4ff5-8656-25315271a5bb"],
Cell[BoxData[
RowBox[{
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}], ";"}]], "Input",
CellLabel->
"In[983]:=",ExpressionUUID->"9cca7bc6-7cc5-4a89-9d03-a705d0f344ef"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"SMparam", "=",
RowBox[{"{",
RowBox[{
RowBox[{"g", "->", " ", "0.65"}], ",",
RowBox[{"gY", "->", " ", "0.36"}], ",",
RowBox[{"yt", "->", " ", "0.9945"}], ",",
RowBox[{"mh", "->", " ", "125."}], ",",
RowBox[{"v", "->", " ", "174."}], ",",
RowBox[{"Q", "->", " ", "150"}]}], "}"}]}], ";"}],
RowBox[{"(*",
RowBox[{"SM", " ", "parameters"}], "*)"}]}]], "Input",
CellLabel->
"In[984]:=",ExpressionUUID->"d3b3b19a-8619-4995-9ba9-a52368e40972"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"V0", "[",
RowBox[{
"\[Lambda]_", ",", "A_", ",", "\[Mu]H_", ",", "\[Mu]S_", ",", "h_", ",",
"S_"}], "]"}], ":=",
RowBox[{
RowBox[{
FractionBox["1", "4"], "\[Lambda]", " ",
SuperscriptBox["h", "4"]}], "-",
RowBox[{
FractionBox["1", "2"],
SuperscriptBox["\[Mu]H", "2"],
SuperscriptBox["h", "2"]}], "+",
RowBox[{
FractionBox["1", "2"],
SuperscriptBox["\[Mu]S", "2"],
SuperscriptBox["S", "2"]}], "-",
RowBox[{
FractionBox["1", "2"], "A", " ", "S", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["h", "2"], "-",
RowBox[{"2",
SuperscriptBox["v", "2"]}]}], ")"}]}]}]}], ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{
"This", " ", "convention", " ", "keeps", " ", "the", " ", "vev", " ",
"of", " ", "S", " ", "at", " ", "vacuum", " ", "to", " ", "be", " ",
"0.", " ", "The", " ", Cell[
"v",ExpressionUUID->"b76e9a3c-6c2b-484d-a7a3-de186358cd17"], " ",
"here", " ", "is", " ", "the", " ", "physical", " ", "vev", " ", "at",
" ", "1"}], "-",
RowBox[{"loop", " ", "level"}]}], ",", " ",
RowBox[{
RowBox[{"which", " ", "is", " ", "174", " ",
RowBox[{"GeV", ".", " ", "Note"}], " ", "that", " ", "the", " ",
"tree"}], "-",
RowBox[{
"level", " ", "potential", " ", "may", " ", "not", " ", "have", " ", "a",
" ", "vev", " ",
RowBox[{"here", "."}]}]}]}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"mW", "[", "h_", "]"}], ":=",
RowBox[{
FractionBox["1", "4"],
SuperscriptBox["g", "2"],
SuperscriptBox["h", "2"]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"mZ", "[", "h_", "]"}], ":=",
RowBox[{
FractionBox["1", "4"],
RowBox[{"(",
RowBox[{
SuperscriptBox["g", "2"], "+",
SuperscriptBox["gY", "2"]}], ")"}],
SuperscriptBox["h", "2"]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"mt", "[", "h_", "]"}], ":=",
RowBox[{
FractionBox["1", "2"],
SuperscriptBox["yt", "2"],
SuperscriptBox["h", "2"]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"VCW", "[",
RowBox[{
"\[Lambda]_", ",", "A_", ",", "\[Mu]H_", ",", "\[Mu]S_", ",", "h_"}],
"]"}], ":=",
RowBox[{
FractionBox["1",
RowBox[{"64",
SuperscriptBox["\[Pi]", "2"]}]],
RowBox[{"(",
RowBox[{
RowBox[{"6",
SuperscriptBox[
RowBox[{"mW", "[", "h", "]"}], "2"],
RowBox[{"(",
RowBox[{
RowBox[{"Log", "[",
FractionBox[
RowBox[{"mW", "[", "h", "]"}],
SuperscriptBox["Q", "2"]], "]"}], "-",
FractionBox["5", "6"]}], ")"}]}], "+",
RowBox[{"3",
SuperscriptBox[
RowBox[{"mZ", "[", "h", "]"}], "2"],
RowBox[{"(",
RowBox[{
RowBox[{"Log", "[",
FractionBox[
RowBox[{"mZ", "[", "h", "]"}],
SuperscriptBox["Q", "2"]], "]"}], "-",
FractionBox["5", "6"]}], ")"}]}], "-",
RowBox[{"12",
SuperscriptBox[
RowBox[{"mt", "[", "h", "]"}], "2"],
RowBox[{"(",
RowBox[{
RowBox[{"Log", "[",
FractionBox[
RowBox[{"mt", "[", "h", "]"}],
SuperscriptBox["Q", "2"]], "]"}], "-",
FractionBox["3", "2"]}], ")"}]}]}], ")"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"V0Tpre", "[",
RowBox[{
"\[Lambda]_", ",", "A_", ",", "\[Mu]H_", ",", "\[Mu]S_", ",", "h_", ",",
"S_"}], "]"}], ":=",
RowBox[{
RowBox[{"V0", "[",
RowBox[{
"\[Lambda]", ",", "A", ",", "\[Mu]H", ",", "\[Mu]S", ",", "h", ",",
"S"}], "]"}], "+",
RowBox[{"VCW", "[",
RowBox[{"\[Lambda]", ",", "A", ",", "\[Mu]H", ",", "\[Mu]S", ",", "h"}],
"]"}]}]}], ";"}],
RowBox[{"(*",
RowBox[{"Effective", " ", "Potential", " ", "at", " ",
RowBox[{
Cell["T=0",ExpressionUUID->"ebd23bc9-e440-4aa1-b264-c2510bade84c"],
"."}]}], "*)"}]}]}], "Input",
CellLabel->
"In[985]:=",ExpressionUUID->"84a3b2fb-e976-4033-8af6-2e5298ef84af"]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
Parametrization up to 1-loop level: fix the zero temperature vev and Higgs \
mass\
\>", "Section",ExpressionUUID->"7678679a-8c89-4569-bcd2-b91b8d7f4209"],
Cell[TextData[{
"We have 4 bare parameters: \[Lambda],",
Cell[BoxData[
FormBox[
RowBox[{" ", "A"}], TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"97d4e215-6b97-4fe2-b4ed-82228a2f7db0"],
", ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Mu]", "H"], TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"27895d46-903b-4128-ba85-791a70ce7565"],
", and ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Mu]", "S"], TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"66c47265-69fa-40e3-8dd0-136895fd744e"],
". These 4 bare parameters are transferred into 4 physical, observable \
parameters: ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["m", "H"], "=",
RowBox[{"125.", " ", "GeV"}]}], TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"4addb4bf-6550-4781-9a36-aeaffb18d7e8"],
", ",
Cell[BoxData[
FormBox[
SubscriptBox["m", "S"], TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"5e6f7701-f51f-460d-9003-c8cdfac6ea37"],
", ",
Cell[BoxData[
FormBox[
RowBox[{"v", "=",
RowBox[{"174.", " ", "GeV"}]}], TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"413f50b2-82f5-47c0-bc26-757c4f5784b3"],
", ",
Cell[BoxData[
FormBox["sin\[Theta]", TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"4c6be19a-1ea3-4ccc-bedf-9730d88ca299"],
". We need 4 equations to get them. For the masses and the mixing angle, the \
equation is just given by the definition. For the vev, the equation is given \
by the fact that the 1st order derivative of the 1-loop level potential at \
this point is 0."
}], "TextIndent",ExpressionUUID->"241373b0-20c1-4b9f-aba5-e068e0be5d66"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"MassMatrix", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"V0Tpre", "[",
RowBox[{
"\[Lambda]", ",", "A", ",", "\[Mu]H", ",", "\[Mu]S", ",", "h", ",",
"S"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"h", ",", "S"}], "}"}], ",", "2"}], "}"}]}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"h", "->",
RowBox[{
SqrtBox["2"], "v"}]}], ",",
RowBox[{"S", "->", "0"}]}], "}"}]}], "/.", "SMparam"}], "//", "N"}],
"//", "Simplify"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"MassMatrix", "//", "MatrixForm"}], "\[IndentingNewLine]",
RowBox[{"mh\[ReversePrime]renorm", "=",
RowBox[{
RowBox[{"Eigensystem", "[", "MassMatrix", "]"}], "\[LeftDoubleBracket]",
RowBox[{"1", ",", "2"}],
"\[RightDoubleBracket]"}]}], "\[IndentingNewLine]",
RowBox[{"mS\[ReversePrime]renorm", "=",
RowBox[{
RowBox[{"Eigensystem", "[", "MassMatrix", "]"}], "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}],
"\[RightDoubleBracket]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tan\[Theta]\[ReversePrime]renorm", "=",
RowBox[{
RowBox[{"Eigensystem", "[", "MassMatrix", "]"}], "\[LeftDoubleBracket]",
RowBox[{"2", ",", "1", ",", "1"}], "\[RightDoubleBracket]"}]}],
RowBox[{"(*",
RowBox[{"tan", " ", "\[Theta]"}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{"derivative", "=",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"V0Tpre", "[",
RowBox[{
"\[Lambda]", ",", "A", ",", "\[Mu]H", ",", "\[Mu]S", ",", "h", ",",
"S"}], "]"}], ",", "h"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"h", "->",
RowBox[{
SqrtBox["2"], "v"}]}], ",",
RowBox[{"S", "->", "0"}]}], "}"}]}], "/.",
"SMparam"}]}], "\[IndentingNewLine]"}], "Input",
CellLabel->
"In[991]:=",ExpressionUUID->"44555118-2691-4eb8-a100-0b373ef6a148"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"46.0397819172131`", "\[VeryThinSpace]", "+",
RowBox[{"181656.`", " ", "\[Lambda]"}], "-",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]H", "2"]}]}],
RowBox[{
RowBox[{"-", "246.07315985291856`"}], " ", "A"}]},
{
RowBox[{
RowBox[{"-", "246.07315985291856`"}], " ", "A"}],
SuperscriptBox["\[Mu]S", "2"]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellLabel->
"Out[992]//MatrixForm=",ExpressionUUID->"c44c854e-27cd-4e0f-9d86-\
c6678e26c2fe"],
Cell[BoxData[
RowBox[{"0.5`", " ",
RowBox[{"(",
RowBox[{"46.0397819172131`", "\[VeryThinSpace]", "+",
RowBox[{"181656.`", " ", "\[Lambda]"}], "-",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]H", "2"]}], "+",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]S", "2"]}], "+",
RowBox[{"1.`", " ",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "46.0397819172131`"}], "-",
RowBox[{"181656.`", " ", "\[Lambda]"}], "+",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]H", "2"]}], "-",
SuperscriptBox["\[Mu]S", "2"]}], ")"}], "2"], "-",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "60552.000000000015`"}], " ",
SuperscriptBox["A", "2"]}], "+",
RowBox[{"46.0397819172131`", " ",
SuperscriptBox["\[Mu]S", "2"]}], "+",
RowBox[{"181656.`", " ", "\[Lambda]", " ",
SuperscriptBox["\[Mu]S", "2"]}], "-",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]H", "2"], " ",
SuperscriptBox["\[Mu]S", "2"]}]}], ")"}]}]}]]}]}],
")"}]}]], "Output",
CellLabel->
"Out[993]=",ExpressionUUID->"98a23d80-62a8-4453-9bbb-00ee96b1671c"],
Cell[BoxData[
RowBox[{
RowBox[{"-", "0.5`"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "46.0397819172131`"}], "-",
RowBox[{"181656.`", " ", "\[Lambda]"}], "+",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]H", "2"]}], "-",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]S", "2"]}], "+",
RowBox[{"1.`", " ",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "46.0397819172131`"}], "-",
RowBox[{"181656.`", " ", "\[Lambda]"}], "+",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]H", "2"]}], "-",
SuperscriptBox["\[Mu]S", "2"]}], ")"}], "2"], "-",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "60552.000000000015`"}], " ",
SuperscriptBox["A", "2"]}], "+",
RowBox[{"46.0397819172131`", " ",
SuperscriptBox["\[Mu]S", "2"]}], "+",
RowBox[{"181656.`", " ", "\[Lambda]", " ",
SuperscriptBox["\[Mu]S", "2"]}], "-",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]H", "2"], " ",
SuperscriptBox["\[Mu]S", "2"]}]}], ")"}]}]}]]}]}],
")"}]}]], "Output",
CellLabel->
"Out[994]=",ExpressionUUID->"687391a6-1350-49e4-afc2-79be56b659b8"],
Cell[BoxData[
RowBox[{
FractionBox["1", "A"],
RowBox[{"0.0020319160378923775`", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "46.0397819172131`"}], "-",
RowBox[{"181656.`", " ", "\[Lambda]"}], "+",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]H", "2"]}], "+",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]S", "2"]}], "+",
RowBox[{"1.`", " ",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "46.0397819172131`"}], "-",
RowBox[{"181656.`", " ", "\[Lambda]"}], "+",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]H", "2"]}], "-",
SuperscriptBox["\[Mu]S", "2"]}], ")"}], "2"], "-",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "60552.000000000015`"}], " ",
SuperscriptBox["A", "2"]}], "+",
RowBox[{"46.0397819172131`", " ",
SuperscriptBox["\[Mu]S", "2"]}], "+",
RowBox[{"181656.`", " ", "\[Lambda]", " ",
SuperscriptBox["\[Mu]S", "2"]}], "-",
RowBox[{"1.`", " ",
SuperscriptBox["\[Mu]H", "2"], " ",
SuperscriptBox["\[Mu]S", "2"]}]}], ")"}]}]}]]}]}],
")"}]}]}]], "Output",
CellLabel->
"Out[995]=",ExpressionUUID->"69507cf3-8ae2-4a5a-bac7-08693dfc8516"],
Cell[BoxData[
RowBox[{"180566.34930122847`", "\[VeryThinSpace]", "+",
RowBox[{"1.4900221975413924`*^7", " ", "\[Lambda]"}], "-",
RowBox[{"246.07315985291856`", " ",
SuperscriptBox["\[Mu]H", "2"]}]}]], "Output",
CellLabel->
"Out[996]=",ExpressionUUID->"891c22aa-1fa7-4643-8af0-2e36f1c5459c"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[{
"One benchmark as example: ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["m", "S"], "=",
RowBox[{"5", " ", "GeV"}]}], TraditionalForm]], "None",
FormatType->TraditionalForm,ExpressionUUID->
"e8ed2c6c-9e23-48b5-867b-afa8b35f10a7"],
", ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"sin", " ", "\[Theta]"}], "=", "0.17"}], TraditionalForm]], "None",
FormatType->TraditionalForm,ExpressionUUID->
"e53b2582-201a-4dc9-ad5d-2021939fb1c1"]
}], "Section",ExpressionUUID->"2f4c2fa6-916f-4d0b-96b1-6e55dc85dfde"],
Cell["Take an example here.", "TextIndent",ExpressionUUID->"2c3c4611-79c6-43ca-a447-e6d158d565f0"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
"\[Lambda]\[ReversePrime]renorm", ",", "A\[ReversePrime]renorm", ",",
"\[Mu]H\[ReversePrime]renorm", ",", "\[Mu]S\[ReversePrime]renorm"}],
"}"}], "=",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "A", ",", "\[Mu]H", ",", "\[Mu]S"}], "}"}], "/.",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"mh\[ReversePrime]renorm", "==",
SuperscriptBox["125", "2"]}], ",",
RowBox[{"mS\[ReversePrime]renorm", "==",
SuperscriptBox["5", "2"]}], ",",
RowBox[{"tan\[Theta]\[ReversePrime]renorm", "==",
SqrtBox[
FractionBox[
SuperscriptBox["0.17", "2"],
RowBox[{"1", "-",
SuperscriptBox["0.17", "2"]}]]]}], ",",
RowBox[{"derivative", "==", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "A", ",", "\[Mu]H", ",", "\[Mu]S"}], "}"}],
",", "PositiveReals"}], "]"}]}], "//", "Flatten"}]}]], "Input",
CellLabel->
"In[622]:=",ExpressionUUID->"2c3aeef5-e0cc-4491-94e5-bfacf51537ff"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0.13097760222767618`", ",", "10.62040921035893`", ",",
"93.08462328541674`", ",", "21.8137571270973`"}], "}"}]], "Output",
CellLabel->
"Out[622]=",ExpressionUUID->"a0aa23cf-58c2-4230-91d0-0985aa8ee986"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"Smin", "[", "h_", "]"}], ":="}]], "Input",ExpressionUUID->"18b9b383-a081-4dde-a1b8-2b4986fbf6d5"],
Cell["\<\
Plug back to the expression. Now this is the effective potential for this \
benchmark.\
\>", "TextIndent",ExpressionUUID->"2b33a58b-38bf-4d4b-b695-d25951d3f7b3"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"V0T\[ReversePrime]BPeg", "[",
RowBox[{"h_", ",", "S_"}], "]"}], "=",
RowBox[{
RowBox[{"V0Tpre", "[",
RowBox[{
"\[Lambda]\[ReversePrime]renorm", ",", "A\[ReversePrime]renorm", ",",
"\[Mu]H\[ReversePrime]renorm", ",", "\[Mu]S\[ReversePrime]renorm", ",",
"h", ",", "S"}], "]"}], "/.", "SMparam"}]}]], "Input",
CellLabel->
"In[623]:=",ExpressionUUID->"652f5952-9b45-4571-a723-624d2fde405f"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"-", "4332.373546093974`"}], " ",
SuperscriptBox["h", "2"]}], "+",
RowBox[{"0.032744400556919045`", " ",
SuperscriptBox["h", "4"]}], "-",
RowBox[{"5.310204605179465`", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "60552.`"}], "+",
SuperscriptBox["h", "2"]}], ")"}], " ", "S"}], "+",
RowBox[{"237.91999999999413`", " ",
SuperscriptBox["S", "2"]}], "+",
FractionBox[
RowBox[{
RowBox[{"0.06693984375`", " ",
SuperscriptBox["h", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["5", "6"]}], "+",
RowBox[{"Log", "[",
RowBox[{"4.694444444444445`*^-6", " ",
SuperscriptBox["h", "2"]}], "]"}]}], ")"}]}], "+",
RowBox[{"0.057152701875`", " ",
SuperscriptBox["h", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["5", "6"]}], "+",
RowBox[{"Log", "[",
RowBox[{"6.134444444444445`*^-6", " ",
SuperscriptBox["h", "2"]}], "]"}]}], ")"}]}], "-",
RowBox[{"2.9345425062451884`", " ",
SuperscriptBox["h", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], "+",
RowBox[{"Log", "[",
RowBox[{"0.000021978450000000003`", " ",
SuperscriptBox["h", "2"]}], "]"}]}], ")"}]}]}],
RowBox[{"64", " ",
SuperscriptBox["\[Pi]", "2"]}]]}]], "Output",
CellLabel->
"Out[623]=",ExpressionUUID->"fd2db53c-b2d3-4bcb-8ec6-0611b55fc0fa"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"{",
RowBox[{"V0T\[ReversePrime]BPeg", "[",
RowBox[{"h", ",", "S"}], "]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"h", ",", "0", ",", "5000"}], "}"}], ",",
RowBox[{"{",
RowBox[{"S", ",", "0", ",", "100000"}], "}"}]}], "]"}]], "Input",
CellLabel->
"In[344]:=",ExpressionUUID->"66a61053-ead7-4c8c-9f90-f91b7e718371"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJzFvXlUjt/6+N8k0SCJyJQ0q5BGVPfzqDRrnjVPmud5UhlKQqaQCkXJUJkp
1RMahJApU0iSUprNX857X9d9Pr3X+eP31++s91pnrde6127v17OvPd37vixy
D7bw4mBjY8vmZmPj/PP/FaXKnS981LTntzH+/Jeo/cnsS1zKlyNUic9OL0OL
KAp4dsdee5W13ozNKeYnDSw2I1e8VOHB7j/EyPPuE7xUvRN54e6A1B/9c5gj
fJXGBhb7kIvZmaxozFvBND0XtfV51yHkFxWFTlYl6THbTs1/e7G6ELnDjFUO
tk+smex/6sq29Rjy+ZoKhwaH3ZmKlm/nG1gcRy7D3xCdZx/EdDx+Y1XOvFLk
ja+FZdTbo5hbvx63f95VhtyKFeTg4J3CvGCcES1RcQa53pXttaVFm5lf7l1o
vlhdjjz+QtZh8f4s5pa/5YhX/ovPW5zb/XvLuX9x8JyzcfjXi65rVMk97f3e
76YywTNw1npNxqQudiZ4Bl54c2y8+lgFegbe7XoyQPTKgzrwDPzK8zxFnTsz
0DNwP8azxZXLlNEzcP0G27c6swzQM/C7l+JnJg3boWfgu024tdRZXugZ+Dru
J/2LnELRM/Bf3tsPKo7Homfgoos5XsskpqJn4D0Gn5gnzDLQM/CJnidy8FzS
8V74Rddtyt36sdC9Ghn0DDyLM5T7qrYEegYeIb/EYK+pEBM8Ay8XaIwqLBtF
z8BHW8qqXVcLssAzcLaGRRzZZwcY4Bn41Vvc/DeOKqFn4FRX2uvz9w3RM/Cq
OeVp/jWO6Bnr//SG/NcQX/QM/NZWbpc5SeHoGbix/cVntZMS0TPwF97cc+Zu
SUfPwFOaZ5bZf9iGnoFP9KxTK/NIoq+NirBIlQ+Zugo9A283fWk4+aQaegY+
LOd2fEOsAnoGXjISsGrwHQ+OG8BzDxSN3Smdj56BCy3m+Oz5QYYFnoG7yqiP
3/09jwWegRe6bZB9oCaHnoHLy3/hs2o0RM/Az+u9CBKrXo+egf94uIurp8oP
PQNvK1veVugfiZ6B863lq85+lIyegZupJFpXbdiMnoFP9Ky881XB867nVMHl
Wc6cZ9aiZ+DxU7bVFATqomfgr2xOUg+ytNAz8PN+lyZl7JVDz8DFMk2SOeOF
0TPwGP2db9YZKaNn4J3vsvMOx69Cz8A7wqeWZtxQYYFn4Cl86XPYy34wwDNw
mfMnfi3m0kfPwHfKWUzn9nJGz8Bz43sd3tkGoGfgbb/bpOzGotAz8BfaBsG2
czaiZ+Alr1SvMbm3omehZYYqBiFvqPpFc+/KWVugZ+Cbzo37vOk1Q8/AiyY7
3fnFboiegXPUvzw5W0wTPQOvZVXa/CzgxvEZuO/WbS6v41XRM3C7d5oN83h0
0TNwVquo5liSAXoG3t0vMGm+nB4LPAOnLLXa3q1ezgLPwDusjWTHwhnoGeu5
WnDfHdH16Bn47IE7ryQ+BKBn4OptQwPWvdHoGXjL/eGbt/o3oueps4sPSvR1
UuOd63xFNB3QM/BpHWb+F7Ps0DPwM8E2l7c3WqJn4O3vrrhomhqgZ+A6U4XF
7wYuQ8/Aje8PDrhOWoGegava9zS9++MTPAOfqnrOdnqRBXoGbsNhlj1phTV6
Bj4wyTSoVtUSPSM/Xf9sn8BaFngGzsbuua0mQRo9A6+9zuM4KmOPnoGHtK6+
8ZwtAD0D921STOHmj0HPf9d6bH7d1NiDtuseDW7oGbjCpA8R0rdd0TNww2eL
N73+6oiegbeHSJd/C7ZEz8APPhtkWj9hoGfgdnpZS0rvLUbPwPc9NH68WNwI
PQMfnHR+77sFtugZ+LfsoQUaH9ajZ+AlVStUmQ6u6Bm4oKPO0F1nZ/QM/LKW
kHr7fWsWeAZeu3vvcm9DdRZ4Bu76Wb+x/Zo5egZOrY873iG7AT1/++Dg9bzr
E2WpJLxlvqQPega+Ys7l0Edc3ugZuLXYNu+4Znf0DDyzb9+Sg0cd0TPwPaWS
/oZGpugZOBtPT8Os8Bm4rgMeZuHV++IL3Z+Bz366w25wqQN6Bt4roHGwLdcd
PQOPGjsdzfT0Rs/Aqwao5LVdPugZePdvlfAbe7zRM3BXXdsfSoNu6Bm42S1W
gpaYJQs8Y7uUTczLI9TQ8+Df8jz6qR2CXXxX1ALRM/A5p+bKew35o2fgnQ9m
NXYZ+6Jn4D/OzdyVVOCOnoFvXXlfx6PJBj0Dl1mwritQXwM9A7/xaAXftM/0
+Aw86ZReoeYTR/QMPPGJ1we5DC/0DNzj3N7vrlf80TNwHhWTBt3uYPQMvGWZ
L/fLmyHoGXjVqYirc2eEoGfgudetFhsa+KNn4Ga79rQ92O/OAs8jjjyzDUK+
UI9VJWUO/Q5Fz8AHXvFY+BuFomfgVlwqH5TTg9AzcOGQwaZd4r7oGTh3vvK9
zscu6Bl4ydNDnDmnDdAzcP1rIf4RClroGbhE2tOAm8JO6Bm44iK26IIbPugZ
+MqYkY678iHoGfjqxHcyFQfD0TNwVfGA4a6uSPQM3Cx6WOT0gyj0DHzPHYfi
Jqko9AxcTLLj26nz4ej5P+UpDlFtRYUlzdWR6Bn4Guk7vXvGItAzcIv2QTel
y2HoGTh/mVvtZocg9Az8aLJzj7C0F3oG3iGgMGnlTSv0DJyt5Pax2LOS6Bk4
l5Pu9YxuetwA/uvTZAMlow3oGbjZExuvBPEw9Aw8Vcx2x92uKPQMXL7tOGfK
6Tj0DDyBo2zfHbVE9Aw84AfDIdE0CT0Dl2GdOvWblYie+9Z4JEr0DVM6Fu8n
+z+ORc/Aec46eC/9FYOegX8KFV56bWsUegYeUbn86pljYegZuMTSC3IHRPzR
M/BlSyvSguY7o2fgHcJhvtMN5XE/CFxMbfueTAs79Ay8Wy1x/bt5fugZ+Njo
56lXqsPRM3DbdHaR+Kex6Bl4ud5s5ZI5yegZ+Gxp40NaRzaiZ+A9I0tnd/Cn
oWes/7SnNSHX0tDzx0uCy3LKRikJ7SHdBIMk9AxcK6ri+kqXRPQMfFT/d/v5
c3HoGfiDu98HMyOi0DPwG4rr9iS/CkHPwI9KndY6F+yJnoGP90fOCPLUQ8/A
U4TL+xssrNAz8GEu1/OVGrRn4EueVN9P/xWBnoFfK3lbczE4AT0Df7u6g3V2
70b0jB4UXn1fH5uOnoF3mbTPMGjYjJ6xPgtGNGR9t6Lnd0uuv/29YZy6pOK1
PHnbRvQMPOh6d5wj/0b0DHyDyzmvhRrJ6Bn4IbkdU58WxKFn4K6T+MOObYtA
z8BTlYW/7tzkh56B85RlufXrWKFn4PrdjgVpD0zQM3Bxy3KTwiP0uAH8c3T9
ldedkegZ+Jnt3zI2nkpCz8DPX1z3wyI0DT0DP76bt09HYgt6Bi7FLVYYa5mJ
noEbZ5/WKf2QxfqkIvDCyMKb8q6f/vDVn78/rVJ7/eOBjwyF9qygS9UpyGuf
W70M68lkvJaa1fW8axvyX+u0hup93zIar9xTZNu6m7osuMxQsu8GtTX/1fbL
td/rxF33+OXMO0AZP70TbBBynzJbnNiSpbiAFc9tf1yiIp9aXZK2ks3vKcW3
fjUv488+xe+xQOhz8aOUfIzGpEserymrBVoFljxrWLmyX7Il+ooogaKxDxcV
31Har/kbggvMWDcSHp4KvHSC4s6yMMkp66LYvgc1v8lwYP1nvt94kvoVfroy
UKaHkndz8dR868Fa8NeD0Wlq9O88VdxHOb2x9o4LCWBJrdJMk+Atp8aOVGgJ
7RqgfvTm23ceCWdVeSoKGYRUIN/zzHn+YH8Y8qGZLl+S1w1SP6quKcxwiWNZ
ZC88EvioEnl51gqHvJpY5P0ZfEV9/MNUy7zSB2FWG9E/nKMW/TIz2cWzvw76
OXi+YXX2UW9kOwPiAvishmu8++T68bwauI5OZMzDS+V18HeBTzxXnMihPvA7
3t9garTtpSgT+gNw71ueH7ss+fH5rlCfKU2ZY9TNN6q7X69IwXUs8DOPmXnR
FilMqA/wrJ4D94QuZqAf6J8yK9Uy1Cq3IZ94zgx+oD5xLlGu59/PxPpAOYEc
T5tu+dPnIfB3c3s0TXaezsQ4gt93/Ar/JqWkcIwj+B0Hsk4c+qIbxwp7MKXJ
1MKGElhrHP/2zzgR8fbUKtaaB4x1dbdlL1eHIN9Z7JLIc7sGOdQ/V/PkNSvv
vDqoJzy/KMZh6FPbbQaUD8+/FhC7zjErqe7S0+c3Liqew+fBAzzfeVcoyvPb
GPUxdh3fjfcpTHgeOA916+hqvW3Yb2Gdph7uXddaSa/foL07DxUESzTEoH9Y
bwjy5s3doU2vQ6A/h7Rw2i/8r/4M59UCG9zlciN4sP/g+5Epp3rO5j1ksAtY
H3nRFY/tGvj9MDKZ/XCdg0JwFtvWNOQGXA0DRwavMcTP9qjkNFVQw5fPpXe+
/rM+v9RwSzgkhtX7d55O+LP+D5vqPLdmkJo9R1beXyWBBR4G5N3ULPKHqPSE
uxuvKqXg73i0QktZqu88xXHva7R05y/0D3FxWNBcdOrdPgaUM7EfwvPQ3/JX
pGZvT6P7G/gPeBOSxd2yjQXjJ5SjNPdlTO04D7Py4YrGnHkZ2N6TWXoaBi29
GNfAm5/IJ/eGPGNA+RP7A8Qd/F3lN3bHdvXR/QHqOftYg7aWRRYLxm1o7+aR
I8v5U0WYUE+ILyr1cNLDG/frYD6F57NH+fud5nPi8/jeR9gud+qzNzj+Qznd
odk6Cd68TPi7MC/E3E/N8sjiZ8G8DM8PMEReWla01sHz+L5jssnjwPW8OI9A
OSGhBZ+DN3Ky4O/C/FJ7P4ZL8KosnvfC85ffT5b4VjQHn4dz6bizKeVBDyRx
PoJyOg4t7A5avQT/LsxTnW2C8npDmnj+A8+/GOnwOymkhM/jOa2Ihr3kcg2c
16AcV+84WdU+bfy7MN8pOshlcwUZ4z4Fnm/ROfBBYBsTn4dzyDPxiSN5M/Vx
foRyalnl5sJ5Jvh3Yd6Uks7devcZfR4Fz3c4tUYzzc3weTh/6z6qtv/JBiuc
Z6GcqpOBJ6672uHfhfk3yChk/Fsgfd4Czzu51LxoF3fA5+Hc6bgvn4lEhwvO
11DOzo3eW3OOuuPfhXl8XlDkJY3XfriOgud/vFp8PvyIBz4P5y2pl/Ju2kb7
4LwP5chMz4+rme6PfxfmBQk3+zW1N8JwPQbPF6ZciH4uFYDPwzlDu9ncJy0Z
IVg+jKvDuyRFYlxjkcM47OmzyiohKwrHW/i7doVGy97G0+cbwF2vO0ZP+hLK
gvFw9JdT2Wm2L1Se8+WSI8kROM7D+JxQfuLsmyspyGE8777o7H5lOBHHSRg/
SxbZrAs4F4/1+fTzio1jywi19eFDnteHNiHH/SBf2fd7iWksGMdgXBW7qtiZ
YH0f4xfGh9rT8muOPhrB97wQ72GMRe7Tvo/XKf2NE/Ec6k84dhqE1FGNJ/r1
pib34XgC44Dnm6Z9TuLcOG5AXLcoDprl35rDylI99jzw0n6qsJGKu+Rxj9pT
9aSwfscsjEeI92/6KulKr6VwfMB4X/L8o7vwctafQVWEzfgwRSk/3pJT9ph6
3BWQMH3yUow7fL+T/nSWedZKHAcgTmf1bCv1rmawChj7ZA1CjlDLuLIsDIpf
Usza9l0O2hTGF8Sv3mWVZYoj+hjvEI9vX0559LN6HatlT8zanJVFlGBPoUDK
urdUz8UGx48rTDCOIE67THg2KD6j930Qd66+3Ldsr9qzvv6NB64TFM+D7+GO
Le+pF35seTw3bTFeIB7F/Kt39yx0xfiF+OqVPZb9KtLjn/58r5Riu2rzTNXg
I8XDvLfKbpo7xgXEndVGwbPihT4YpxBHVe5f29/+9GdZ/u1XB05R43/7+a1e
Sl0idM/gHD+MF4ivy+Jm0uWFIRiPEBdB5mvmlLuFs1LesNdc9DhLjetwP4ha
NEB9ttYQqpANY2Vt+no80LMcOeU9s/YXVxiuAyFO2zplwrcJxrFsRMM+/55F
rzfGeS96f82KwXiE+OIR2BuiKrYR1yGw3ogwPCTYpZrCgvUP9P+VCqJpF8QG
GbDOgXhp9VQ4eyy3HOd94OWrlgpput3CdRHMvzvTive0DF6s44sb55SsyMb1
gPuyIoXmJdxM4FBOyGSbT4eLGxnAIb4uT9Jz6lncX+f8rrZaom8PcrZ5HCWp
RZ0M4OXjmWfZ/BqprmnnfpRKcrOAQ3x5OC30kp8xg3U5Y9PXixsPIhdIXKO5
48p05PrG8eKXFB9SU5OyDLbnLUYO8cXHVPh1e+sS1pS//Zi3ELm46pvxezMU
kKvPW94XKNNOXV+1ZKsSmxpyiK+iV7W5V/i0WKr+Wy4HPjqKXDlK3nzvNm3k
wlFDjkK7Oqgu6w2dFvP0kEN8tX4pdf9abcTyuL7h8cWCYuQ79X4IbTlijJzP
2bSuj7+T6pVrOdt63wI5xNeCIbOxgHEb1s7pxsO/N5QgT5mxsuCqpy1yLr1S
qabMD5SrnI1jSdp65BBfPSlWeUJFbqzqv+O5chnyU7KF6eX3af5DgSuraPIn
SmuyYcTiNi/kEF/CujuG15duYPX8PX/5dRr5j6v+Ug33aT78Ny7SP1PLVLw/
Mz4F0c+TOGqdnLSY9SkU4wvmo26bvUO6SyORQxydH3PvH2DG4PwF845nncTp
TwYJyCGOUqo/KOzmTsF56nPXJcGMxGFKv3Z2bUhKKgv2WdDPJ0nN5Qy6O8aA
/QjwaQ6+t/Xm/8DzDdgP+rdSDh6b6XM84IXmvtdPViQzoXxYV8u2sk86fiIF
17Gwnrdw3Pz69UFpJsxfEI/Bbzq6P92djfsCmE9dlzycGiGyGdvVWyjQU+M0
Qom9yHj7lJWO61KId6sXj5eZ8SkzgcN40npqjZbTNCkmzHcQv+PLdGtezJ/O
hPkO5tmr0TI/Bm+vQA7zaa6ICzdn50ImzHcQv5S+28e+yDd1MN/hPLt/gKkX
v4wJHOZTNlbVqgvKHxgw30H88qQpeTmFS+B8B/PsTtPT/nV7xJjA8X5FVePn
XD5ZnO8gfsfLRy6/2bMS5zuYZ9kKW+oGNosih/m01e/6jJ5WCuc7iF+7TtME
3SsGON/BPOtq/WrJD2Mt5DCfNmrv11eTNsP5DuK380lNR2ilNc53MM/W6jY9
26VthhzmU5kbZzt39zvgfAfx6+oy0+XeM1ec72CeHch5wlNq7YQc5lMZTTW1
rvOe9HxH4lf/XW304jpfXO/BPBsTGOpUa+yNHObTZR0GaZ/lgzDuIK4DLoxa
5MSE4HoPyqEebMh/EeWIHMqp9czdoRLig/MglNOYVfxTc0oQC+Y16Id8sqMl
8i++4jwI/dZztuwU8YFR5NDPz49tsc23eItxDXEUv4xtaPR2PJ7/wHmyyIOX
A1kCSRi/3cJVeQpzx6j7WgFFeX1JeC4B5eg1dvYfF4hDDuUEFGlMUdNOYMJ5
BZSTnTls8Zotifl6qVzVvaR/35/E+1Eabp2tq/Nxn97fkCet61Dxr3t9sK6Y
tcPKLX19E3Jz0zfjWcaV/7qfti5jWthOw3/fp4JxZnPIgLpN8GPk7SnVLhLV
f/YRe97JPB9tRf7/V/3/V33+V/3/V3vjhc+sZd8ajvXZW7j5e2kGJzPKbHIk
m/F25MqXziQ/Dn9d1zRhP/KI7Edsb89dzOaXS59TfTtcMHWRJvM9GQ+BX5Yv
k7/SbIQcyrnYJsBXcnYVc+XYs0lsIkfweXW2mpmlz2yRw/M2Vf63Dy0zZjby
SH37PV6Mz0s+XLF6cl8AcnjeSfuwiMYBT+YOsh6A52MzeE6//ByBHJ5/Ok9n
rDYumPmfdWz7SXy+VU+I7db0ROR4n5Yjo720Ooo5n4xX8HyzZhJ/6qY05Hg/
9rG+PBWbzOz8e65UdRaf3+ram1m5MQM5PH9sV6xODN8mJqyrJ/a3qws2fUpe
9+/zXuAT+xv87tCvGk7/PFF1T4IJ4wbwee9mf2tpF8H+AHw4bPJatb09jKYJ
50ue5HwJfi/gMR/06p9yqOHvArzLSsntwLA9+geeXzzFoqTFCz0Dn/Grcfev
+hD0CZwr1HleHyMGvQGPcvcPjLqRgt6As7Qzq+VcNqOfifEFfiBeTPqn+wjP
Ukc/wB/Uzw2dMr4M/QD/2uvQb/h2PhP8AG9Z8PlZmxo7CzwArzDPn8fD0EcP
wLc61Le9PW6PHoBfDS2y3WrgjR6AvzfU/DTVKxQ9AOc4nsbrYBmLHoCPfliT
l565EdsL6wfXZKcVpy7oYnuBDx4Vb1RtpbC9wHuWTzmZUb8C2ws8v1hQb7Kd
IBPGB+BbQ4fZ+vIl0QPw8pCgqV9yf9SBB+DL7i1jD13NRA/AHVpyMnuSbdED
8A2NzctX3PRCD8Azbn0VVY8JRQ/Am1xutCncisX+APzS0K2nw6O0H1gXmbBX
7+mZY45+gCe6sN/tHzNCP8Dv3vNhNrQz0Q9w67nnrWcPL0U/eB8yWKPz3glR
FoyTwH/sX/tpxHUVegPOdvTpujcv9FjgDXjUnpc/HYM1WOANuHAuP4/2eUX0
BvzOkMNezx4L9Ab8u3GYkEC/B3rDcpY2r6u/H4LegEtnW3RW+cWiN1gHnqod
yGSx7NAb8Fu8M9/v/2qF3oDLccw8bnbCFL0BTxh2U89hUegNuFnNtifvhKfg
/AJ8v0HZgTjOVTguAd/9/MBx3nFD9Ak8ridD8CqbNfoE3itb5j822Qp9Ale6
bXks5pcJC3wCv3e6Z9R76XIW+AQuulSgUjVTD30Cz49Xstwd7Io+gdd1135i
Tw9Cn7Ae7rou8etMjyv6BJ7tZer83XU9+gTONZs7pfyYDfoEXvyy0LzY0Rh9
Ar/N3PR85T4l9Al8GVe845dfyugT+NGVA1TuJhP0Cfzp4duBigLr0SfwxHEn
RTlJV/QJPEot8ODuBhf0Bnxpu3v/mrZ1eL4EPEWiVSP6x6s68Aa8z+dV7pO7
1ugN1v+2eR4Rr2S80RvwLGcb2ekHPNAb8IunpGQS1rugN+Cyb/aUL/S0Rm/A
HVJt9oQ/XYPegCfuCHQ7f1wcvQFXyP/ReVib9gZ8R0+c/JVuN/QG3KLajM0n
1Au9AW+9Oen8jN0+6Af4yQPn5jidc2GBH+CvOQvldrGZscAP7EdKxpVL+ucG
oB/gy6fMdtusugH9AN+98GLxplpP9ANc2zxpxTIuZ/QD3GfpQbuSPDP0A/zp
mU0Hl/xciOs93Gdx1+TMk6LjFLjVlkTP2L2e6Ae4b1VGlKWCH/pB7tn97axN
ELYX3iP0bWgx/uIWiu0FfkkpwObl1mBsL/BTPp+GFbf4YXuBb3O5NZtjsie2
F7jbXEX39ot22F7g4vu29/wc18L2Ar8epmYorKGD7cV7icV9r2y3e2N7gReu
XrbUWTkI2wvcYVWPSYJ5GI5LwC/fOyHQUhuB/QH4phhewc1PI9EPvO8Y2be2
yFEwEv0Azw4s5eLVD0c/wC33P2NbvzEE/QC3nen66E7tBvSD5aSGD/nMd0M/
wFuebw583WKCfoDvaLg9a+oXVfQDXFPn9iGrVh/0A/zbAvG9a+pD0A/eh5y0
v2bp/Ej0A9z6W5KBdHMMjj/At3o1iq4/Eo9+4D1OCGdWu+qcWPQDXIm9a/Vs
qWj0A5y6yu29e04E+gHOIXnrRLVICPoBbhrlHq6zxxv94L3ECJ4gjxh6fwQ8
pe74BdldtxngB7iT56xDwc6+6Ae4csfbFR+mh6Ef4GY74izCsqPRD/CN77OK
p8cmoB/gNRLpUxOsUnD8Ad4iuumb94+N6A3OB5S3rzaati0RvQGviJo3GBkb
j96AF8z7WbqSLwa9AW9OKl6zqTQcvQEf6H5XzlEbgN7wvt8qDTP+q67oDe8H
2quedOLWxH0K8LxJ916UqNHegP9wax+awx2O3oCLt+/h1imORW/AV++6L77t
TjJ6A84ZrT17elkqegPuo/Ky7infJoxT4Dwlh2d7fd+MPvFe344i01GJjegT
+K2uqwabviSjT+C+16taLOwT0CfwnyKm16v3RqNP4Mp9363NW0PRJ/C6KrYT
zQHe6BP46jPNURbX16FP4L+kR1zZnOg4BW5VxPPoeQHtE+8Tvn//vMgtHn0C
r0863tHksRF9As+S3XcxsC0dfQLXLW+dIzSwBb0d+PM/dr/L1I2BZubqOz9x
PxtCzo03kXsd0N7Z5Fz6+Z7Fl/Ml1mJ7E03rbn/s2kZ9lD62/MdKG2zvflJ+
+pKyjB2+Xri/O0TO1V2l2jlMWkNwX1PQ9O6uYUgFpa9cuHSwJQbX5/qkPhfD
LufVhW7E9bn5kCOPTF8RlXov5L5M8RZcT3bp/d/7LdDeUwHq7kEyzdS7HVqf
E7aJYz+pIO+n2ho+O+skCGI/uZD+8kdO2S1KZfbrzILfb+qgvdkb1nle9qih
pI1+vqk0McD2niTlJ23/+Ijf2xHbe4qUf0dl5hf9mz7Y3jOk/KeXrPY6VYRh
eyvIOefijkVXx5Lisb3n8lL3X1KspzZW1Z9/R6Vhe6vI+ee0npEXlqMZuH7e
Reo50YMe94PvffxtlNXUsxb1lCp6gPdroou8rv+UW4IeDHMkDFLWPaBex3E5
+RjwY7yYkPP8NHIPBzzokvKD09ZIpzQZogc9Un7kqunK5zTXo4e1pPyKkaJz
wR0b6N+dlG8smjfnZUQEejBYEL1PaFcrFZYzKnBmRhJ6OETeO8SISvjW/07H
9qo+3nKraPJzKvyOW3NOiA62F94DvhRWS1vYthrbu9K9fYaawTOqRWiM8fPk
EmyvJnnvULRAsV5YaKAO2qtCyrd4qPXojRUvtleVlC8ntJJj2QV9bK8aKX/+
iNfwNClnbK86Kb9Juuasd6Y/tlfjs7xbU+YTyvKT4u5JbFHYXi3yfuRQz0V3
f9UU/N114pLPOLY8ouL9lMVNDm9GDzMe5jeeZntD5fM8D5E0NEMP8B5TtPHD
lA8v9NHDzDn6/VGLOqiIuKlrXpVoogcF8t6knL9S4cYCMRwnl15/uyQl/RWV
8CakwG6NNL1PJ3/3csq3rasP6+C4N4P8XfX4Cq7CV9I47gmTv6v11eTr5J41
6EeG/N3SFRUPP9asRz+y5O/qT3brPbQ9AP0okvc+feedDuxXjqbPNwxVYoVu
vaBEKxc4SCrT5xu8174qZCR2UroyJ8du3LRFP/B+tohNu+jodEv0w89+zMoi
/x2lV/G4u3iXAfqB90FHu2K8h26pop9pf8bPuTVvKbH1VlpCUTPxfAPeK/U+
OBxgn6dJ78dJfQpmCSz057BCb7ykPsdX7Dby4jBHb7ykPjFGnXrpYgycL/hI
feRtJPikLdXQGz+pT1pg3+t5hY7obRqpj2KJbG7O6QD6fGP7yJHO12+oV0rP
OQIGotEb5zGr3Z7fPlBPxO/92G1N78fhffR30bNaexc4ordJH39eUZj7gdog
qPFw+S5L9Abvv64425g35eiit8lLT3SMruqiXnRujbihKorzEbxHa9z8okD0
EX2+MSXSbHKt03sqe5qoau0sY3o/TurJecEp9pWHE3rjJPW5beNxldlhj/Pp
JPJ32UK2h5ww/VEHfiaTv1vWbBd11sSWPq8gf3dKarrrj2J/9PM98+y4dvQn
yr/ccZV0ohf6gffs2+aInyw2dEc/P1vtFk7J7aEGby5RsKp3RD/wXu+B+MvB
e4bm6Of3LA69B5c/UtUpgReHF6qjH3g/mL9mS9cdb/q8gn19WcChZ92UwtIT
X54bmKIfqGeggglVconed38n9QxdNO3ygg2euK74feWf8jfHfd056RQT12kc
pPzlK5u/cFFm6GHo7/v64c9UR1WcWp69P3qAewIxEslhb6/60PvNv+/9hT9T
h6sWsR8+644e4H0ij7Dy5V8q9uhh7O/9AZU+6qiL1IJjp9aiB3i/eVAyhuOO
7nz08PXve0abXmqtZc/FkFL6/AHqKSDKUc4VT++vh0g912RqvdMM3YD9Z4jU
84GL/7WERQG4voo8XekWr/6FmiuxLyZ2JATbC/ccdM8EjbN1BGJ7o80mj7xu
HKDEZ1KloUq+2F64p5TMbpcQo+uG7Y0ZctyqYz9Arfh51n+DgCXdXvL+NHvd
9WM9j6To/ePfexEP+6ln8e82JanQ5wlQz3tbJNyTM+j9NdRzxUkD3o3Fgdje
KFLPLu2r3SHhodje0EWuwh9HBykVWfXze3Mj6PMTck8jznH8MNv6MGxv+I3z
J0y2DFJbewcEZPyCsL1wn+p5tIzDwyJvbG+Ez5RVlSKDlE1jaL1OuSO2F+6H
fJeO6Vb5wMD2Rk51vjur5As1WpLjPOnzGmwv1PNs1Hmb2e/odTjUs1DyzcrQ
HHq/HEbq6blx8LSAWwSOq4PwvYaM7r7ZEtHoIXAvf4PNhWGqLvDYXfF9MegB
7p8wClLzQyWi0EOwurvDNd1hymeR6BzXsjD0APfEZgduG5l2JQA9hDy/2Lfw
8RCVry9/+8tLd/QA917uOkpOWx1lhh5Ck3g3pnsPUfMu9G+celwFPUA9T3ZV
bL+3hd7fQT0vqVpNrxgLRQ9BpJ6haW57Vg1HoYfPpJ57z11yW8UWj+NnEKln
t1vdqPP7RPSzYcq12Bvho9QdiZu3N3xLQD89Dl71o6tG/6xPwt4ruMWhH/9T
0/hluUap77ybpsxPiEI/8P49L4SSFqkLRT8B6zwLt+8ZoQaXKA0ezfVFP3BP
xu3IiuJCd3v0Ezh4ecWgxAh1avSu4vzL7Lieh3reejJvcnE07Qfq6cjziyeF
g96v+ZF6CuhNzhuTp/e/PaSePL9dTfs2JqEfP1JP3g9X727x2ojj6idSz+by
YI26nlT05pHoK6+kNE4ZrR2pSWlPQW/vyf2iHpFvLnWvk9Cbl1h1zT7WGPVT
5cpTwxNx6A3uKc3xS1cSSYlEbz710y2/W4xRktnNj1V4gtEb3FtwCFvh6PnC
Db35ent3ubwbpR5sULu68Jo2evMk9eQyHGHlVtLxBfegsg++WvSqkvYG9dRo
eneDyUvvc9+Tem7eJKa4vy0FvXmTevomlldKl6Whtw+knlHHPnd29m9igYcI
sk/0vREu9/3mN9znXiD7rEDy3Rl4MCX7i8Hgk6oyLqIs4LAPesu2VmQ9/wJc
vzHIOvw5ud8LXI2s/1kW3lH6JStw3oH18KxBzUS5rfR6eApZV6STe33gh13k
n/k95Gby8Ogz9/97nvlnHrQn36MBHyPcmXDwFkXmi9BFvRea34chjyHjuelK
CzbJFRHoc4zMI1L1Hz9t3hhKczIvRJaUHlz3hn5+iIyf111WuIfcjsf1AIzD
Tj93Wvzii0YO489R7bu30gvofg731kxPhfoE+XYw4Pkt5Jxh4vv9veScYeI+
N5Psf1et2rvP4PlUfH4D6bfTVZpTv6duwfpAfGkn//q0UD4TOZyfSD/0EpUt
y8R6wn0kQXf5uScXi+D6GebrWwaq5kJq4VgOzGsdWYZGThJxdFyTdpnIzRI+
olXOwPUD6bdCBWlxtsr3kcM9h6yN0YJBhzNwXQrn2DqRp3uvs6Lw78L57cyU
3OY6wyQWjBtQTswVJ2cFi270DPNjTabKmmFGIpYD8/Vky26PM5rxGF9QjsaC
F4eyK6fhOONEfseD5BwJnr9GzjFCPJr55Tg764DD725of31wLHIA79VUked7
N2S9Eb0vgOPVOXJ+MvBSttT+5TjGtRE5N0gi5xLA4fdKmRDvwN3mpu6xmMyF
495Rcp7gT+4xAl9LzjG8f5d+rG2Yj+ODFtmnpy9bx7rJJo0czhP2meqE97ZL
4vgA9yFV7pXxP6ucjs/D/YR7s6zr+WZI4LgB5wzuC4KFdLjUsZzlZJ9bnt3K
bbRQAzns608o3r2Zo7YSy4H7k6/L5E9vH1mGz8N7/yXlnodXXqffL6wg+2X1
oophye2i9DhG9oOC7F8v73ujR79fJvvWSPtv38pWGtLPk/fjwU13HiTc1sVx
bzrZb6qPfpi/Zj69ToN9dEx1we07nmY4Hk4h+7JnF5qfusnR76nZyX7nE7nn
DBz2lYoK+y2dbRxwnPxJ9lPbyfdBwH8Tvodw+Ltfyf7ikD3HYyMd+v0a7MsK
U8zGpz7wwHKA7yLlwHg7TMpZHrc0NvTjBuTjZB9hWiy3UKucHs9HyXgiTr4n
Aj5OuCThUA7uj/rexXLb+tPr1QnfGcHzYWRd/Vsl+u6MVPq9TwSJ9/S3ukJX
z8Uih3FGZN/aH7M86HEG9hFrOEQap1XR79dgPHx5cX9x1W56Hukn69VLy3/G
NVon05ysP29/ipXcqUCvi2Acq3iRnrBmHz0uwfrNos+uzaUiDTms30zPzt4V
lLAZObyXib0mMP2FbBqOYzAO7K/YxmYr/Q7HB7gftWld372RSzw4nkD8ppBx
Bp4HvtT7oMIuYXp8KLLa3WBQfIc6ZrNgNKZVEOMO4p374twrRu+kkUOcRt3Y
9u0+nxJybbLeaCXrDYgviN8Ro0Xxzdr0eQjcc5aKHu9aJMhEjnGtJO4q+1MT
uQI5T1tife6w6y8K4xHiaPrTk1EqTHuML+jnp69m1Pd+oeNo4vc7EC/QP9f4
27B1StH9c+L39cC/k3LsSDnQD6E/a0rNcvleSvdn6G+zubcaPNkVTscd2f/a
Vt3IW+ZF90OYl7vNwszuqcVhP4H915Xpohm6f/ohzo9kP3Vav6pawjkZeTDZ
72jK51LZZSnYrzaQ+b25mLLUzZmM8+Ap8r7j8f0ZQUtynjKAw3uZzZKTVum5
NOD8COsZJf51cXFJ3XgfdT+533iZ3EcFfo305z1kvgNeTPqzM7mvCLyMcD/C
8fyWjPOMQ5P4HngZ0OMzOT+UTDFl5z5KnyMJkHPI7jV3d2fsMqfPM8n52LW4
VuaVmTZ0vyLjefXpMmd3ezvsV3DOlkDWw8A5ybmiE/nOBfgkwj0mcDin6ibz
AvTD307/nFO5Nytm3Rmn7+F8J+dvy89bBSx77on8Jzkf83QZyqsu9kY+Rs6R
9H7NfOmw0xfXdWXk99X4vln9o/9nvJcO+5RyvkJRvsMJuF6FfdncMxueLn2d
jBz2R4k/RCs1qRRcX8G6y458PwLjTCxZN66Nj1geNLAC+UlSnx+DmT6CesuQ
w/1Y4fWbzytMWow8g/Q3Y92uw4b5C3BdxCLvm3JesP1Z0K9Afpa851q+x/DF
p8cSyGH8rLgRvmZoshDyfLK+Slz7z/oKxp/jZJz8tXLjwc7ZSrjfhPdKvnO6
XlgKjeDzmKdU3XinCvdMHMfWkPcghUYnBo7ELkKuSdZp1mpxh+2M5bEfwvMc
F4PFti3Uxfc4sL4SFgvq0j2njO9xppP+XyWXOjvt9xIcrybBd83kOw7gkwlv
nsDhvpYc+b4DOCfhSoTDOPaDnPc+1TxudeE8zdnu/9NvxW0XpJjpuiKHcfh5
n+qtl/JedDmk3+oIJjzhuubN+j/7l1u91AZ7z1OxC+nz3hFy/pnscbo7XsMf
OYzDj/Lm/MiRDabvWZHy12XIT+pSsUY+SM5XVZqMFR++96E5KWdRidcvLks/
mpNx+7xkoqBOaQDyaLKfdWaKrHoQF4L7GpjHI/r683+JTcI4gnWC17R0gyMV
9P1M2A9ubc+u8JdKQg7nIer6fhXH1iXjeQucI80+nDCtwigG930QR7pqKqZT
3LbR7+NI/xSgms7Ue22h712Tfr6fdcb+9IosLGdl1Zq6ZbLn/rXP3RT9WlV3
Wgvy/6/PQ56Hg2R+UcxdYqE6nxvzGgE36w1m/V40F/MaAe8pejvFyFAN8xoB
V919aJ7FBiPMawR83s79X+V2O2A+YeCbvbRuSjzyxnzCwJPqXl3s5A3DPLfA
z/k9WV/zIA7zrwLv2Lvi+2yONPx+5OCEcwBoL3x/ylW959J0LQlsF/Cqfdo3
8sxFsF3Ay8cH4lQ2rcR2ATf2XGZfb2SG7QIusrKh7lS5C7YL+C7J5Ge3Ofyx
XcCtqO7T+fMisV3AN7c1Cb3nSMbvaIAXFiQvTrqyCdsLfOL3LxM5fJ8I51eD
G38Hq+1TQj/Atx2z70/IVMG8WMAVH56flN8uiXmxgO9UqD6ckzeKebyBX150
NySjhBO9AVd6vtvqiulq9AY8widwr/stC/QG3ORE0O7oSHf0BlyIV8yw2CoY
vQF/E7DmcYBuDHoDfmt11A3v4o3oDTgzcJ/1k5it6A34RG+wDo94mlBpfoRC
b8B7B5ZcPXyAid6Ay0f1ZdQXqaI34NOsDJqZPmIYd5j3Y3rsNV+hOfj9PnCx
zWUyDPPp+D0+fv9oXD3z1OlV6A24p+BstQOvrdAb8KMRhzdfHPNEb8Bbhx9S
TbdD0RvwkGMDoeHe8egN+L6VHm8z6tLQjyLZL+wMqHgvP8sQ/QC/mOWucjTL
GP0A57yuxqgzXoN+gMfGvZh+Y+UK9AO88N1h55vz2THfAvCwlLvlm+arYP4E
4PwtVytTqin0CXwms839RSGFPoG/nZUbeo99KeYrAP6NcTXbNlsNfQI/H7dL
/K2ODfoEfuzpaNHwEh/0CfxjFS/H55vh6BO47++oTSZ2SdgPgT+eo6XdVr0J
PcM9gZLrd0set1mgZ/yu3KJkWHKdFXoGnqO5bPSmlwl6Bi5ylD03V5uBnoEb
z9gvfufjbBwngR9xeF+vnU97xu/c2T5uuSuph56BW9gKZcTlG6Nn4G1ttt/M
vI3QM/Bl7tePqwhRmOcBeLnlgqOmJgroGXiuyQd5tp026BnzWmyLD4t74Iue
gavHavU5hkaiZ+CboxI7IyNT0DPcH7DbJBb/8bQ9egYuMv+7n4mPI3oG/nbe
wJdLd63QM/C9aS0uEWxG6Bm4u3b2mY+PlNAz8K2rtnudfbMcPQNPLYm6bXSO
zlcMfLJZeIH/Ckv0DPzpIc157VY26Bm4kVPPlIYvVugZ+Kip07XoG0aYHwN4
ysuyN7JGnXXgGbjhN1HndIY1egauf1NjPDFvA3oGPm3fzquc+VHoGe4bVI7O
ryxY74Wegfvq8Zl6x9J5oYG//sor1LSMzgsNfPinzGq9PAf0DHzvuoW3blcZ
o2fgbX4z9Hcv4sF5H/g+5tGm9yKG6Bn4w/XKKa137NEz8F+Sb3IVJNzRG/DH
HmZbDRZ6YZ4Q4JznclRmzXTFfCDAIwqYJVFTTDBPGnDXkbtRP5/ooTe4L+Ha
kKpZF+2H3oCzHQhdInSOzvMMnOo6d9ao1xu9AT8jsUZp0N8NvQGffYS9LrzD
Cr0BXzCm8SxNgf53UoAPKFPpHP30OADcc8zurl8gnecZuH2xqNXMO57YP4H7
3jjkMMfTD70BD2u7YaN6IAC9Aa/6IOL3u90bvQG/zN2sERrgwAJvcG/h4LVM
3lt8IegNuKtXatmKqyHoDXhjRcah6KUB6A14ZmnBHr/p3ugN+Hm7davaQp3Q
G3B+zZCX05p10BvwypNS3HEnGOgN+PEHi1Iqf9LegG/Tlaqz/OyN3oBnfc0c
23w4COMauGpJ791Vq8PQD/COznUGDQeD0Q/cZxDh9F+YsiiczitO+MM+9+7K
V+F0/nDCV5+55Sf1M4TOH074dn453Swtfzp/OOFmPj9K1mS40/nDCd+bmJjG
fteMzh9O+Nm1Zfm5qcp0/nB4vj9774mk/8ofDpybq6N7iy+dP5zwG9JSx4ql
Q+n84YS/NJ3/ooaKpPOHE64YPyVhhWEMnT+c8FaS5wfzhxP+ieR7xPzhhGeS
vIjgGe5FyK50bxeIi0LPwNu9HFq410ajZ+Ay4a/PeElFoGfg62W+HCmLDUHP
wIPYk1P13HzQM/DRg/nnTfTs0DPwy1OLvi7ZMVYHnoEvNy0UMBygxz3gkd3n
ytsO0PlpgSu8C158rorOaw28f5IaM5g9Bj0DF3W5P3OaTQJ6Rg+/joXdi09G
z8AFp15OHj+Sgp6B7w21i4m+lIKee8g+vdU1ZHXYrDj0DDz6jq/t0qE49Ay8
VHrawdjd0egZ+BYNz8b3+8PRM/ALcUtPDtYGoGfgVtf4GaPerugZ+Oma9zt/
3lHB/RHwxM/Wnw5Y0Pn0gC/5pLJCRILOtwyc8+zRH5/46XzLwAPvaLAbJsWh
Z+CXZRlcvNNS0DPw/JKQcD3bVPQM/P02UduVP+i81sAPHbb2CvuYjp69yfmJ
oELB9cdDdP5q4DW3reXddeLRJ3C9lZ/3Dn+l81cD3/2RW1DCKhR9Arfh+TYS
pOSFPoEXOfnJzivVR5/A41vPLtlfTK+LgF8TyPQpl6J9Amduu65oNpfOq4x/
t1hyjtklOn81cFF5ATmJ+3T+auA87ZztV+/S+auBf+TykLynvgV9An9i3vAr
9etWVgI5d4JzjFvku4wBG9e5kn3pyNX3CrUtW1DBuH8/okmCdyfy2oifzxUO
lNbJ/X3fU7AXuby4c3DUVWFm2oJflIEyfZ4jUTL7xAFpZWaQu9v1QM//Os8R
Xvfcsl6feejCmhcXFenzHOrYDK1nO+3wns/BCd93/Oe9YH0Jcrt9drFqs0KZ
/8kPs50+zxGx0WoJ3hPLXMdxx/K5LX2ew34pWGDdylTm9ZNP1IV2lSN/vL8g
R/r7VqZVW2OD6mjFv855Pv69X+V47l+cl+Qrg/MQKjjY5tG8T3WQNwz4+ZP3
ji56zc6EPGDAVxbsT3dUW8GEvF7AU1+pdzx1N2RCfi3gd8n3HZAvC7hMycq0
QyNhTMh/BfzyvF4DJ2YCcxvJcwX8k/WmzHyudOYiklcHuKMc7/TTjG2Yl3Xi
Oc9uU/2onJV78BxjWPngg9nJQiy9Q/f7LnoUINcpnRH8XYyf1Sp2e49EwlHk
oqvrP7/UW8q0JefbwCvJdxnpgVZ8BsWnkZ9NYvBkV0Yw7V3nzmxSo89bOvlb
thxpSGL+5/1ZXgXNT7S+qjm/iZl+7qeSEMe/z1sWknNvOGdoJt9BQP4i4G3W
aYkJy6OYkI8IeEXFB+9pqSlMc5JfCPiPKQ5bf6ttYXaRc2/FCd8LZGibpRSt
qUAet6PQQs0ymrlwA2NaUwm9T9+3r2lp3YaNeO4qOOGePOQvAp6+iyWcOhzN
hPiF9fxAng3Pzkx3JsQvcI5tjY9TTzsyIX6B57Y2N71evw7jF7hRa38uV9Ai
jF/gtlNVchdYrGVB/AI3PfnWcFaeHQviFHhk1qv95d5eLIhT4D/jb8aqvPRm
QZwCtxBLHVfL9WJBnAL39nZydmRzY0GcApcQvfQqI8mcBXEKvJxLv2yypybm
G4R1u9C08M2aJ92ZLiRPIHD9E6m/yn/bMiF+gZ+bKX3/Oz8D4xe4jNg9yfen
6Xx9uN8pq3tUutAO8+MB1yP3uiF+ge82d6up8Qik89ERbnahPvr7oUDMfwWc
Z9Y77Um3fTE/G3D16s5dhbKurBwSp7AOf7NHZmz0syuzZ5ivUuLeAeRlsv3t
rF1mTF0Sv8Ddd++ak8wSx/gFzjPVXDW/1JqVRuIUuM/0/H6D7eEsiDvgW+sG
3gobhrIWkLxwsF6Ne7zMb5qpAzOG5HkD3vi55OA5hjJzA8nbBtz55s6AIQ1z
Vlloh3POr8O4HivlWiMTd9iYyfH3vVfTEXpdeo39i8URXVYeyfMG6wrP3Kn3
OYIWsx5dDUvbPS8Wx3PBS4ZzE7u+MSA/Hox7eTaWqfKqX+u4SPkQp0bBWbOf
HGOgH+CX5HsWT/NhsOoGUlyeR5ZiP+w0b1eqq/difYB7ksSPAbkPmUnGB+Bs
DK4Xhd3hrGuQD414GCf5/Kv/B4dxCfgpkuffcgIvJXwBGX/AW96Ko6Gnbqaw
NpPfEXhRy6qT++rpdS94+8yudtY75Qfm/Z44P0IecvApeVPLyVBkMeYrAy6l
0lx7bs9cZu7Uvy/29XDdot4x/Rff/SRcVwM/1b6fw74jifmJxDu9znEuOHZt
K9YTyjdYcUp1j9JCPMcDz8YbGmTNLem8xMC/17jeKu2g/52FiZ4hvxz4GbMJ
Y9dvSME88+CB14i38TCDk7l5wj6ul+zjukn9oZwoiQ19AX88J/P+4wHK2eOY
L1stN4mZs8Og8Eq1K3L9kqVD1kOcTJ/vXnYGIbuQu3IyNe1+DzEg7zF4MLNi
TNdXYsd1MjwfIpHH17X0Kf47GsC/jXb2KOy6X/dTwvZD4KMcnE9da/hV8jp+
47/HCuXPZCR+j1zLjvnbgVsuyRd4n8/FKifxC+UIv0gIWX1jBp63A3/4k1so
6OxCzDMJfN6cezGCt8SwHIi7poqQA/oZq3AdAvzGM9+3v39rYl5l4EffO4xV
s1azlF4r+z/fXYT8FK/6F16GJus/9/b0ipHvr7pwcHWyGuZJhvmXteD8ScFr
+phvGfjnnod1rQxDlo9h1WKDN/Q5qnlY77GUL5aYZxL4eP0Oy0e61qw9h/MZ
OWX0uR/fq1vLF2S7Y15HGOdrd26yNzGm/50yeN74VGyW0CNvzA8JvNfNRGF6
jjfuL6CceV+YLMNnQZgHEvhWht7UqawgliTkN4Z/b4LkCZeewL9MyB8OcbSH
V88u0ymCzpM84XkxMv7A80X+O/jzukJxXwN8Serz1KhfYSxY7wGflcf7rulS
OMuarAeAxwtM3WmpHs7aSsZVnC8kdo+6K6WwBkg5wH9cbAha6UrnIQeudmhK
CJvhn7gm6y6YRyo7N+58bZWO4wDw+8HaqU+y0lnzTjI1gi5toeNr15vbos+u
1On/CaRLGzORXw4NntqU1o55yIH3XmMPW/yFE+MU4mh6SUSv7cMxzDcOXJAp
dClJ8BED4hHiJbkpf6VfjSj2f+CTg/etWlwrhP0W+rnOCYP2xv0M7J/Qn92v
ybzmFqXzeEO/lf/qxnDUtcF+C/yAqszMyQk2LGclkQwJZ/p5N6f01Lnr6PcF
0D+FdfwTS0u8sB8C92D3Lr7uSv+7h9A/3xotNhceCsR+Bdx4SUHnDtkg7OfQ
Hwo28bf+5Ij4Jy7+65ztPjlnu0buM8Dvvorcr4N8m/C7VOSmX/pm9IlxgzPp
53PxVORbOPmva8u9w/zYuF+u8F5StaCsro+su8D/sy3vn3y0X8SC9TbwcPVG
hU1qYixYb+N7QPnRq2/cKFYeWW8DH6oRaQyQYbB+kfEKPHMa6awVr7BmjZJ1
OPDLfDc2V5tYs+zgHhqc/5P7ZrDPAm8Diw5K7fWNYNWQdTjwoK3mq6tsIlgD
/+Pc0pLEI/is9dK657k7haXz4oHIqy5/9MPza2zvBwUO5hWyjoU4mkvyDF+Y
wEUn5B/Gc4ylC9ae3iWHeYPxPoNmbfXQjSXMSWT9Bp5LXrlt6p8tifmBgV99
bKtRNVMW8/2CZ8/O4ar4GatY3mQ8x/3dfOEbyY+0sZ8DV1erS04XFWLJNexo
vShYglxvYMR/xuJ5TIgjiK/GfZeUklXX4jgP3MxKgG3ghhqO5/A7bmo3Fjug
YsGqJetM4D2fN0sfiLD6Zx8hQz//eFvZnrZeC9xn4Xu3mdNmydTPxziC/rDa
Nb3ZTciDzjNP4iuW3MuCcRJ42/GXwU9W+2F+XeCvHupoOKV64jiJ73GOe/ff
3+uOeXfh97p00Te88CYP3oOC39e0KPBOpVcbYypZT0J/cKwL+7nsfhwzgOTR
BX41+LT8DK84zLsL68Ogu4ykZ0VJTC7SD4EH8xQ3CyclMT/w/7MuhXKKry1c
4r85FvPuwvPewfHzOe4nMM+TfQRwd7aHPPzliUxTN7UayYok5OEiIoq8YvS/
/w7tYsYJP07uz8D3mHjfQzmzb57MNuaQdH55oPa/z6Ni1vvJKvVV/ut8Q7y9
f4qE0L/v7fwv/r/KMSU+8ZxqHt9j7SdiTHvyuwCHfCaQTx44g32xTDmfI1OX
eIbyDTdauK8KWsGE8RO4wjyf5gZOOSasu/B8aXm349PbhkyII+BPLpTt+/HT
CX9f8OYwp6vHP5aBvxfee3lQfzNg7ipmB1nf4jmPIZ9N7GR5zJeO915I/g2I
U+ByIS2TVnsbMCEe8d6Lugg1Y7ozrs8h3idfbZTxTzJiKpL+ALzZ94rnGsm1
TAOyHgDuX5BYwselxYT1No7znuc8IqvEmTbk3izwaJIHA+Id+F3BYsUZ2br/
jKuDp5C7h855t+zjemYoiSMYZ2x2+V7gf2eJ+zLgO8QFE1qOmTPPkX0E8Mqk
oVCBRwaYTx74A6syns1DGpjvHfiena876oUmYV5x4AMp689mztdkQp5w4NR6
0wbbBU7MJLIPgvGqqDTZTkvGkQn7d+Cq2tuyHb/ZMWHdBfzhDjPb+GpL3B8B
z+FY5OTqos+sPSK35znXfuRyGcv3rdCTY4rq998LPJCHfOopn0bNQDXW3P26
hwKnnkXeqSYxd97IPKbEyG4nxx763sL5G+XdFqvs8J4klkPyNkB8wXh44s4z
5sMaP6Y7iSPghU75Ma8CPFgMEkcw/4aeKb+51yCEWUviCLhmGi/7h+2BzBBy
nx84fO8P8QV8hnWguvYMT5YsiS/gQpO/ng0zCmA9I/EF8zvv0tipufHhTGkS
X8CPvPj57C57GPMxiS/gFba3H64PDmLegryF8D6UfHe/j8yzwFmzriY3n/Rg
sUjcAX/14bFYC1fQP+uNP3EH3N5Y6vLdjHBWGIk7WG8U+94KHhiJYs4lcQec
8e6ELmd2JFOLxB1wF/+pnBvLw5hfSdwBz/1BlQQuCmSak7jD8sl38cvI/hH4
mSPppikr3FlOZD0A/KT8UxXDw0GsDBKnwJc8Hf1wjTuSdZHEKfA72QsVOr7G
sopJ3MF8JGkgIHY2LYopT+IOeOb0KwPuSmHMdBJ3wPkUzp0tCNzAfE3uw+N7
SfJ9ehP59wuAn/t0wKDOwYU1Sv49AuAhj3587hUOYi0m6xPgzu+WxKj3RLLM
SFwDL2FUKCkrJLASSVwDbylOyRltSGFZk3UF8AbyHboAiV+YN5fofqE0KuKY