-
Notifications
You must be signed in to change notification settings - Fork 2
/
BPeg_2.cc
101 lines (88 loc) · 3.14 KB
/
BPeg_2.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
// benchmark point for mS = 5 GeV and sin\theta = 0.17
#define _USE_MATH_DEFINES // for C++
#include<iostream>
#include<cmath>
#include"simplebounce.h"
#include<sys/time.h>
#include <numbers>
using namespace std;
using namespace simplebounce;
class MyModel : public GenericModel{
public:
double lambda;
double muH;
double muS;
double A;
double g;
double gY;
double yt;
double Qsq;
double v;
MyModel(){
setNphi(2);
lambda = 0.1347;
A = 0.0001396964;
muH = 0.942877;
muS = 0.000292618;
g = 0.65;
gY = 0.36;
yt = 0.9945;
Qsq = 1.500*1.500;
v=2.46073;
}
// potential of scalar field(s)
double vpot(const double* phi) const{
double vtree = (0.25*lambda*phi[0]*phi[0]*phi[0]*phi[0]-0.5*muH*muH*phi[0]*phi[0]+0.5*muS*muS*phi[1]*phi[1]-0.5*A*phi[1]*(phi[0]*phi[0]-v*v));
double mW = (g*g*phi[0]*phi[0]*0.25);
double mZ = ((g*g+gY*gY)*phi[0]*phi[0]*0.25);
double mt = (yt*yt*phi[0]*phi[0]*0.5);
double vcw = (6*mW*mW*(log(mW/Qsq)-5./6)+3*mZ*mZ*(log(mZ/Qsq)-5./6)-12.*mt*mt*(log(mt/Qsq)-1.5))/(64*M_PI*M_PI);
return vtree+vcw;
}
// derivative of potential of scalar field(s)
void calcDvdphi(const double* phi, double* dvdphi) const{
double mW = (g*g*phi[0]*phi[0]*0.25);
double mZ = ((g*g+gY*gY)*phi[0]*phi[0]*0.25);
double mt = (yt*yt*phi[0]*phi[0]*0.5);
double mWd = (g*g*phi[0]*0.5);
double mZd = ((g*g+gY*gY)*phi[0]*0.5);
double mtd = (yt*yt*phi[0]);
dvdphi[0] = lambda*phi[0]*phi[0]*phi[0] - muH*muH*phi[0]-A*phi[1]*phi[0]+(6*mW*mWd*(2*log(mW/Qsq)-2./3)+3*mZ*mZd*(2*log(mZ/Qsq)-2./3)-12*mt*mtd*(2*log(mt/Qsq)-2.))/(64*M_PI*M_PI);
dvdphi[1] = muS*muS*phi[1]-0.5*A*(phi[0]*phi[0]-v*v);
}
// void dvdphi(const double* phi) const{
// double dv[2];
// double mW = (g*g*phi[0]*phi[0]*0.25);
// double mZ = ((g*g+gY*gY)*phi[0]*phi[0]*0.25);
// double mt = (yt*yt*phi[0]*phi[0]*0.5);
// double mWd = (g*g*phi[0]*0.5);
// double mZd = ((g*g+gY*gY)*phi[0]*0.5);
// double mtd = (yt*yt*phi[0]);
// dv[0] = lambda*phi[0]*phi[0]*phi[0] - muH*muH*phi[0]-A*phi[1]*phi[0]+(6*mW*mWd*(2*log(mW/Qsq)-2./3)+3*mZ*mZd*(2*log(mZ/Qsq)-2./3)-12*mt*mtd*(2*log(mt/Qsq)-2.))/(64*M_PI*M_PI);
// dv[1] = muS*muS*phi[1]-0.5*A*phi[0]*phi[0];
// cout << "dvdh = " << dv[0] << ", dvdS = " << dv[1] << endl;
// }
};
int main() {
BounceCalculator bounce;
bounce.verboseOn();
bounce.setRmax(1); // phi(rmax) = phi(False vacuum)
bounce.setDimension(4); // number of space dimension
bounce.setN(100); // number of grid
MyModel model;
//double location[2] = {2.46.,0.};
//cout << model.vpot(location) << endl;
//model.dvdphi(location);
bounce.setModel(&model);
double phiTV[2] = {7.,35031.5}; // a point at which V<0
double phiFV[2] = {2.46073,0.}; // false vacuum
bounce.setVacuum(phiTV, phiFV);
cout << "potential at the minimum: " << model.vpot(phiFV) << endl;
// calcualte the bounce solution
bounce.solve();
bounce.printBounce();
bounce.writeBounce("output/BPeg_2.csv");
// Euclidean action
cout << "S_E = " << bounce.action() << endl;
return 0;
}