-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDine-SM.nb
1541 lines (1517 loc) · 69.8 KB
/
Dine-SM.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 13.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 71297, 1533]
NotebookOptionsPosition[ 69333, 1499]
NotebookOutlinePosition[ 69735, 1515]
CellTagsIndexPosition[ 69692, 1512]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox[
SuperscriptBox["43", "2"],
RowBox[{"2", " ",
SuperscriptBox["246", "2"]}]], "//", "N"}]], "Input",
CellLabel->
"In[1872]:=",ExpressionUUID->"9401449d-8cbf-4e71-bdf5-a15c13e7b5c5"],
Cell[BoxData["0.015276951550003305`"], "Output",
CellLabel->
"Out[1872]=",ExpressionUUID->"7971e12f-1714-42ee-9e00-724ddb9a1e27"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"v0", "=", "246"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"gSM", "=", "0.65"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"gYSM", "=", "0.36"}], ";"}], "\[IndentingNewLine]",
RowBox[{"ytSM", "=",
RowBox[{
RowBox[{
FractionBox["120", "v0"],
SqrtBox["2"]}], "//", "N"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mWSM", "=",
RowBox[{
FractionBox["1", "4"],
SuperscriptBox["gSM", "2"],
SuperscriptBox["v0", "2"]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mZSM", "=",
RowBox[{
FractionBox["1", "4"],
RowBox[{"(",
RowBox[{
SuperscriptBox["gSM", "2"], "+",
SuperscriptBox["gYSM", "2"]}], ")"}],
SuperscriptBox["v0", "2"]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mtSM", "=",
RowBox[{
FractionBox["1", "2"],
SuperscriptBox["ytSM", "2"],
SuperscriptBox["v0", "2"]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"aB", "=",
RowBox[{"Exp", "[", "3.91", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"aF", "=",
RowBox[{"Exp", "[", "1.14", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"BSM", "=",
RowBox[{
FractionBox["3",
RowBox[{"64",
SuperscriptBox["\[Pi]", "2"],
SuperscriptBox["v0", "4"]}]],
RowBox[{"(",
RowBox[{
RowBox[{"2",
SuperscriptBox["mWSM", "2"]}], "+",
SuperscriptBox["mZSM", "2"], "-",
RowBox[{"4",
SuperscriptBox["mtSM", "2"]}]}], ")"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"DSM", "=",
RowBox[{
FractionBox["1",
RowBox[{"8",
SuperscriptBox["v0", "2"]}]],
RowBox[{"(",
RowBox[{
RowBox[{"2", "mWSM"}], "+", "mZSM", "+",
RowBox[{"2", "mtSM"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ESM", "=",
RowBox[{
FractionBox["1",
RowBox[{"4", "\[Pi]", " ",
SuperscriptBox["v0", "3"]}]],
RowBox[{"(",
RowBox[{
RowBox[{"2",
SuperscriptBox["mWSM",
RowBox[{"3", "/", "2"}]]}], "+",
SuperscriptBox["mZSM",
RowBox[{"3", "/", "2"}]]}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mH", "=", "43"}], ";"}], "\[IndentingNewLine]",
RowBox[{"\[Lambda]SM", "=",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["mH",
RowBox[{
SqrtBox["2"], "v0"}]], ")"}], "2"], "//",
"N"}]}], "\[IndentingNewLine]",
RowBox[{"T0SM", "=",
SqrtBox[
RowBox[{
FractionBox["1",
RowBox[{"4", "DSM"}]],
RowBox[{"(",
RowBox[{
SuperscriptBox["mH", "2"], "-",
RowBox[{"8", "BSM", " ",
SuperscriptBox["v0", "2"]}]}], ")"}]}]]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mgauge", "=",
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{
RowBox[{
SuperscriptBox["gSM", "2"],
FractionBox[
SuperscriptBox["x1", "2"], "4"]}], "+",
RowBox[{
FractionBox["11", "6"],
SuperscriptBox["gSM", "2"],
SuperscriptBox["x2", "2"]}]}],
RowBox[{
RowBox[{"-", "gSM"}], " ", "gYSM",
FractionBox[
SuperscriptBox["x1", "2"], "4"]}]},
{
RowBox[{
RowBox[{"-", "gSM"}], " ", "gYSM", " ",
FractionBox[
SuperscriptBox["x1", "2"], "4"]}],
RowBox[{
RowBox[{
SuperscriptBox["gYSM", "2"],
FractionBox[
SuperscriptBox["x1", "2"], "4"]}], "+",
RowBox[{
FractionBox["11", "6"],
SuperscriptBox["gYSM", "2"],
SuperscriptBox["x2", "2"]}]}]}
}], "\[NoBreak]", ")"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Lambda]TSM", "[", "T_", "]"}], ":=",
RowBox[{"\[Lambda]SM", "-",
RowBox[{
FractionBox["3",
RowBox[{"16",
SuperscriptBox["\[Pi]", "2"],
SuperscriptBox["v0", "4"]}]],
RowBox[{"(",
RowBox[{
RowBox[{"2",
SuperscriptBox["mWSM", "2"],
RowBox[{"Log", "[",
FractionBox["mWSM",
RowBox[{"aB", " ",
SuperscriptBox["T", "2"]}]], "]"}]}], "+",
RowBox[{
SuperscriptBox["mZSM", "2"],
RowBox[{"Log", "[",
FractionBox["mZSM",
RowBox[{"aB", " ",
SuperscriptBox["T", "2"]}]], "]"}]}], "-",
RowBox[{"4",
SuperscriptBox["mtSM", "2"],
RowBox[{"Log", "[",
FractionBox["mtSM",
RowBox[{"aF", " ",
SuperscriptBox["T", "2"]}]], "]"}]}]}], ")"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"V0", "[", "\[Phi]_", "]"}], ":=",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"-", "1"}], "2"], "\[Lambda]SM", " ",
SuperscriptBox["v0", "2"],
SuperscriptBox["\[Phi]", "2"]}], "+",
RowBox[{
FractionBox["\[Lambda]SM", "4"],
SuperscriptBox["\[Phi]", "4"]}], "+",
RowBox[{"2", "BSM", " ",
SuperscriptBox["v0", "2"],
SuperscriptBox["\[Phi]", "2"]}], "-",
RowBox[{
FractionBox["3", "2"], "BSM", " ",
SuperscriptBox["\[Phi]", "4"]}], "+",
RowBox[{"BSM", " ",
SuperscriptBox["\[Phi]", "4"],
RowBox[{"Log", "[",
FractionBox[
SuperscriptBox["\[Phi]", "2"],
SuperscriptBox["v0", "2"]], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"VFTSM", "[",
RowBox[{"\[Phi]_", ",", "T_"}], "]"}], ":=",
RowBox[{
FractionBox[
SuperscriptBox["T", "4"],
RowBox[{"2",
SuperscriptBox["\[Pi]", "2"]}]],
RowBox[{"(",
RowBox[{
RowBox[{"6",
RowBox[{"JBfit", "[",
FractionBox[
RowBox[{"mWSM", " ",
SuperscriptBox["\[Phi]", "2"]}],
RowBox[{
SuperscriptBox["T", "2"],
SuperscriptBox["v0", "2"]}]], "]"}]}], "+",
RowBox[{"3",
RowBox[{"JBfit", "[",
FractionBox[
RowBox[{"mZSM", " ",
SuperscriptBox["\[Phi]", "2"]}],
RowBox[{
SuperscriptBox["T", "2"],
SuperscriptBox["v0", "2"]}]], "]"}]}], "-",
RowBox[{"12",
RowBox[{"JFfit", "[",
FractionBox[
RowBox[{"mtSM", " ",
SuperscriptBox["\[Phi]", "2"]}],
RowBox[{
SuperscriptBox["T", "2"],
SuperscriptBox["v0", "2"]}]], "]"}]}]}], ")"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"VSM", "[",
RowBox[{"\[Phi]_", ",", "T_"}], "]"}], ":=",
RowBox[{
RowBox[{"DSM",
RowBox[{"(",
RowBox[{
SuperscriptBox["T", "2"], "-",
SuperscriptBox["T0SM", "2"]}], ")"}],
SuperscriptBox["\[Phi]", "2"]}], "-",
RowBox[{"ESM", " ", "T", " ",
SuperscriptBox["\[Phi]", "3"]}], "+",
RowBox[{
FractionBox[
RowBox[{"\[Lambda]TSM", "[", "T", "]"}], "4"],
SuperscriptBox["\[Phi]", "4"]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"gaugeL", "=",
RowBox[{
RowBox[{"Eigenvalues", "[", "mgauge", "]"}], "//", "FullSimplify"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"mWL", "[",
RowBox[{"\[Phi]_", ",", "T_"}], "]"}], ":=",
RowBox[{
RowBox[{
FractionBox["1", "4"],
SuperscriptBox["gtest", "2"],
SuperscriptBox["\[Phi]", "2"]}], "+",
RowBox[{
FractionBox["11", "6"],
SuperscriptBox["gtest", "2"],
SuperscriptBox["T", "2"]}]}]}], ";",
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{"longitudal", " ", "mode", " ", "for", " ", "W"}], "+", " ",
RowBox[{"and", " ", "W"}], "-"}], ",", " ",
RowBox[{"or", " ", "W1", " ", "and", " ", "W2"}]}], "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"mBL", "[",
RowBox[{"\[Phi]_", ",", "T_"}], "]"}], ":=",
RowBox[{
RowBox[{"gaugeL", "[",
RowBox[{"[", "1", "]"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"x1", "\[Rule]", "\[Phi]"}], ",",
RowBox[{"x2", "\[Rule]", "T"}]}], "}"}]}]}], ";",
RowBox[{"(*",
RowBox[{
RowBox[{"SM", " ", "B", " ", "particle"}], ",", " ", "massless"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"mZL", "[",
RowBox[{"\[Phi]_", ",", "T_"}], "]"}], ":=",
RowBox[{
RowBox[{"gaugeL", "[",
RowBox[{"[", "2", "]"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"x1", "\[Rule]", "\[Phi]"}], ",",
RowBox[{"x2", "\[Rule]", "T"}]}], "}"}]}]}], ";",
RowBox[{"(*",
RowBox[{"Zprime", " ", "particle"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"resum", "[",
RowBox[{"\[Phi]_", ",", "T_"}], "]"}], ":=",
RowBox[{
FractionBox["T",
RowBox[{"12", "\[Pi]"}]],
RowBox[{"(",
RowBox[{
RowBox[{"2",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"mWSM", " ",
FractionBox[
SuperscriptBox["\[Phi]", "2"],
SuperscriptBox["v0", "2"]]}], ")"}],
RowBox[{"3", "/", "2"}]], "-",
SuperscriptBox[
RowBox[{"mWL", "[",
RowBox[{"\[Phi]", ",", "T"}], "]"}],
RowBox[{"3", "/", "2"}]]}], ")"}]}], "+",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"mZSM", " ",
FractionBox[
SuperscriptBox["\[Phi]", "2"],
SuperscriptBox["v0", "2"]]}], ")"}],
RowBox[{"3", "/", "2"}]], "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"mZL", "[",
RowBox[{"\[Phi]", ",", "T"}], "]"}], ")"}],
RowBox[{"3", "/", "2"}]]}], ")"}], "-",
SuperscriptBox[
RowBox[{"Abs", "[",
RowBox[{"mBL", "[",
RowBox[{"\[Phi]", ",", "T"}], "]"}], "]"}],
RowBox[{"3", "/", "2"}]]}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"VSMfull", "[",
RowBox[{"\[Phi]_", ",", "T_"}], "]"}], ":=",
RowBox[{
RowBox[{"V0", "[", "\[Phi]", "]"}], "+",
RowBox[{"VFTSM", "[",
RowBox[{"\[Phi]", ",", "T"}], "]"}], "-",
RowBox[{"VFTSM", "[",
RowBox[{
SuperscriptBox["10",
RowBox[{"-", "10"}]], ",", "T"}], "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"VSMfullresum", "[",
RowBox[{"\[Phi]_", ",", "T_"}], "]"}], ":=",
RowBox[{
RowBox[{"V0", "[", "\[Phi]", "]"}], "+",
RowBox[{"VFTSM", "[",
RowBox[{"\[Phi]", ",", "T"}], "]"}], "-",
RowBox[{"VFTSM", "[",
RowBox[{
SuperscriptBox["10",
RowBox[{"-", "10"}]], ",", "T"}], "]"}], "+",
RowBox[{"resum", "[",
RowBox[{"\[Phi]", ",", "T"}], "]"}], "-",
RowBox[{"resum", "[",
RowBox[{
SuperscriptBox["10",
RowBox[{"-", "10"}]], ",", "T"}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"VhighTresum", "[",
RowBox[{"\[Phi]_", ",", "T_"}], "]"}], ":=",
RowBox[{
RowBox[{"DSM",
RowBox[{"(",
RowBox[{
SuperscriptBox["T", "2"], "-",
SuperscriptBox["T0SM", "2"]}], ")"}],
SuperscriptBox["\[Phi]", "2"]}], "-",
RowBox[{"ESM", " ", "T", " ",
SuperscriptBox["\[Phi]", "3"]}], "+",
RowBox[{
FractionBox[
RowBox[{"\[Lambda]TSM", "[", "T", "]"}], "4"],
SuperscriptBox["\[Phi]", "4"]}], "+",
RowBox[{"resum", "[",
RowBox[{"\[Phi]", ",", "T"}], "]"}], "-",
RowBox[{"resum", "[",
RowBox[{
SuperscriptBox["10",
RowBox[{"-", "10"}]], ",", "T"}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"VSM", "[",
RowBox[{"\[Phi]", ",",
SuperscriptBox["10",
RowBox[{"-", "5"}]]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Phi]", ",", "0", ",", "200"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Tplot", "=",
RowBox[{"0.9402", "T0"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"VSM", "[",
RowBox[{
RowBox[{"0.963", "Tplot", "*", "ratio"}], ",",
RowBox[{"0.963", "Tplot"}]}], "]"}], ",",
RowBox[{"VSMfull", "[",
RowBox[{
RowBox[{"0.963", "Tplot", "*", "ratio"}], ",",
RowBox[{"0.963", "Tplot"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"ratio", ",", "0", ",", "1.3"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"VSMfullresum", "[",
RowBox[{
RowBox[{"Tplot", "*", "ratio"}], ",", "Tplot"}], "]"}], ",",
RowBox[{"VhighTresum", "[",
RowBox[{
RowBox[{"Tplot", "*", "ratio"}], ",", "Tplot"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"ratio", ",", "0", ",", "1.3"}], "}"}]}], "]"}]}], "Input",
CellLabel->
"In[2615]:=",ExpressionUUID->"1dfa08ba-833b-4998-97df-b8d1463cf655"],
Cell[BoxData["0.6898602743283391`"], "Output",
CellLabel->
"Out[2618]=",ExpressionUUID->"506a42b0-74cc-4e70-98ee-9fa520e8ac69"],
Cell[BoxData["0.015276951550003305`"], "Output",
CellLabel->
"Out[2628]=",ExpressionUUID->"63736e75-56dd-4d9d-84fd-66ee2b1d66d8"],
Cell[BoxData["74.25032440040356`"], "Output",
CellLabel->
"Out[2629]=",ExpressionUUID->"1c9de633-3b3a-4746-87ff-0b6ff597fc7d"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsolutePointSize[4],
AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwV1nk4VG0UAHBkDUWRJYmQJdnXwpy5QwkhzNwZY8lOlmylJKmUXUIUija7
KEsly31bLH1SpFJSSZFCiBZZvttf8/yed54z584957xH3nO/gw8XBweHBScH
x7/PTWcWr16S7TGzvSkcsJNp3nKbX3VjsH81JbC32DRBlpNAh25cU/Fvpbz1
onzYLitPZBl8chFOb6cYdgXyjlB1iTatMD9e/6eUC18Va9bKUokY8eU7y0XP
KesshVq+t1gROZkWZgtpryjf9Y077lMdierVqQ9+Rw9Qgvzycsf0nYmO1F7L
Ob/3FO/Fy2fnNngQU/FCo4fKhyiCb5sFhst8iKMPqlV/FQ1TSg6ywppa9hEr
uRyDDuR+piTke0SBRiiRAz9v/EgbpXBcr+7IpUYQCscuTIfFj1EuPn1e6nXh
IFHTbKI3Ff2NUjR7LvGqfjTRue3k3XG/7xT1RW//lg3HiQqTtbH61VOUyHki
NNnhJDE94F0YWT5N6VylI3+m7BQRK83/caboByU+5NwwtCQTD++yVugUzFKu
2bxcP3EkjVjJqlAMy52jlNZ6K37ZmkHk5tr6fU/7RRkt0WyXoWYR7wyKEjWS
flOk1rfYuX/KJhRfTpcFx/+hbHi00brpfA5RI3Zu/Fv0X4rhfaeIh3p5xOOz
A2Ff/JYp0V9nArk2XCYSz+d0ZmlzgHlds7qA7hVC3Z/irFvNAW3RVW/y91wl
wvnOHgkv54S5U1dNvEuvE0sWei1TRSvgb5TVsSNN5cRl8UHbDFlu+Bl/Tert
ukrC/POp95oF3JD+V/9P2+EqIiX+Fcf+XB54IBVgc1G9hpB8EE2bSOMDviqC
sotSS9zLVOhLFeQHBddc48JVdYSbZ5e3ehI/OMaaORl/rCOuccqeDowXgKeu
R12NcxoIbUAdY9GCsLdC9pa3diNh1cxnO+K3Gja13+3eJI0I7WXPuXVTq2FD
VBb/uWpEpMq5dyuYiMCQ8J/khJ33iUjPxgNOD0VAwVd5ejz2AWE+Evqwvk8U
movyBusF24iPE4Meh+bWQh1qCFS4+B/xMj2lPsNYDLyOXxRJce4iHmsaC5Qd
FYOI3hvDodJPiFth2TWvecRBmhUQ03C5mzg+Z7W8bd064IvKy1sz+oyQW7xd
sGggCQ4G+qcN7PoIsUs+U+JHJCGQhe/tRX0EP2WtuUarJOSkr+ap1H9BfI8L
+ea2Uwrcr0U7SMq/JFq4lbYRuDQUn5wI6uXtJ1yFMl+dOCQD3qdkbG8LvyWe
CBsIcLvKwf4HbOkd8R+JXus157tj5CDzSmCnYddHoj9pcvOFAjnYk++Zdkts
mPjEU2Ku8VYOdvY/l6eVDBMLixJxTLY8LKzeJPm09xOhNvnnZyVrE+hNh7Sd
po0Sid3Nn+gMReBeUZwnljJOpAvlRcgdVISehjdPV30aJ7KtDnJ9O6cIz14k
OmeYThCFbRpycS8UYTBNQkd1ZoJoaClklzspwYWVyto1Ht+JzzeO9y45bIb9
ajcqubZOE9gZC6LETgVe+dc4V+CzRJxVXVlviApYb3e9fDJllmjhUchaTFOB
dz/ujee3zhLbYjh8HbtUYLVddkiqyhyhG3BPcNlSFeyf+yoHLc4RijRtnIGp
QeLVrnTZ2l8E7y+ZSW59dXjCM/lT2PYv4aM5L6wtrAUBx1u9Zgs5kc1AwnVJ
WS3QVQ6MufCQE+kliJtyaGrB85Gg+55jnIj7vVbQU3steJ2z4q6HLhe6ku73
ODhbCzaKPooT6eRC7yf6Tpev14aKFdnDan9XIFZl9bKCmg6EWdmUy0Tzot2q
PtPrdupBUSe9QGVIEM2nHLg3yNAD4wNczzMEhVDp5KlT13z1oCduc8s6AyHE
XVcspXNaD8QzyrKOpAihRrMv1N2P9ODshc1+pYbCaLNTYOZJmj7sL9/6J+Hc
KsRxLEx3imIAasIWU1m1IuhW39EDnUZGwFOupCxSsxZtX6NWzX3MBCzO/hl4
NyyN/P5mXrzOBIgp0Y9yDpZH+9tGdat3YxD3NOmMfawSSnbmVVoMMofjNlPs
wG1qyKv9iK+2/w5YroXdw580EOKT2hPIsoTiAzxGsT3aSFs0Lmcs0grmqqYN
88P10N4fpuq2QTawlIoM/L8aoMuXHsn8SrOFuZip/1zOGKPa9G0DvQ72YBGc
M/VzjQmKbDS1v2izB/pPhIxL2Zih1sfXZ5LYDvCz5ULPGQxQwE7j5gCmIyQr
XLaK1KCiSRWpRzddHCGPx2tRRYeKwlf+6fqz1xFiBq8KD+hTUcyTO2+TAhyh
wjLK1NCUijIcjRbKoh2BuCad99SaihrcDbd/LXAEiyYGLdafirgO6d/dN+QI
75SU1z8opKIElji69dkRLvXardh4lYqEts91zI85Ar9EyVJUMRWJL9X1J884
gn3gASX5KipSidf7Xb7CCTZzH5+2a6Qiuwxdw29KTqB4ViVsQx8VFZRq1wfu
c4I47zZPPx4Mdbz26igMcYKXM58pjvwYml2ZM/A83AmWNt3gNBHEkHXwPKfJ
ESeoiRVR4xbF0Lz2A1uhVCfo8vj2JEQGQ6x7Tl8qq8j4UR/cKnQwtK47av3k
lBOE3t8ZedMFQ9hymcamOSeQNsZC9N0xFKL1lsr44wQiOMHV4IGhtkzwb+Gk
Q4zH8HSlL4YO4AL16Wvo8Jc6URwWiqG+D3m2mnp0aAzqZDudxNDZH83HQ6Po
0Kd4hx5STMbrzfBwOUIHtYrkVNdSDNnc9KJaHqODwu2LqbvKMcS7X4BTLoEO
IVV1HyRuYCjmq1Pc0xw62c+Dl9PqMeQ79C1Wo4EOVZXFzwYeYMicaHGTbqRD
ZK1dTc4jDMkXnjXjbaGDmMwTY9t2DL11MVwafESH+TOuWO1jDO3pP3E07QUd
pA8FzTj1YMjkqVTM+CwdDib2is4NYkjqxji7/zcd0gKGiw6/x9DP1NbtDxfo
ELSTs3H+A4ZuWvn8zedmgHuxz4mZYQxtbquJthZjQGhdh+6dMQyJNu88XK7L
gLiWZDxvFkOT+dKsHEMGpLd+yBmZw1BX9ITRie0MWCchD5q/MHTaKOs3i8aA
VcXWHfV/MLRQ+y5KwJEBI05FB3OXMDRSfuCgfzgDykUH4yv4aIixYeld6UEG
iD9Xovfx09CjM6d3jkUzwECzt/23AA1di8yV3HeSAQoW35L0hGjI0+xuY2A2
A+a1pI2iRGiot4aqUHmeARLxsb0xojREVXicMl7AgIMt3vNH19CQHP+AS/B1
BgTUmnwJF6Ohdz0LSyENDLh8tmRmsyQN2Zqf8qtuZADPqYpqfikaam4Qfva9
hYyvpPX5M+mCfNnLoe0MmI7Srs5cT0POPkAL72dA1R+dA/WyNPT4VUfFrbcM
4NvnVhm+kYaMrfaI/fjAAIGOsR1b5GhIUtPzc8QYA7TOns5Pl6ehF79PJhyY
Z8BoYeKhDYo0ZB4oNFW/xIAFQ7+4etJ1g9nMn1w4nI3yeWmpREOZ96+rRgni
gIVIeHpspiEufY3M26txKFM7kDlCOqykYf7XWhw2XtjB66dMQ/ap7f8dksHh
4ZasKpYKDRFLdnp35XAI964b+I+0Zlh/wR9FHLYdOocZq9LQKsZYcPRWHH5N
DlbzqNFQbEfYy0ZtHCoPjNZ4k57YNm/2Vx+HSdm59y2kuzYKisSYkfHq2c3e
W2jIJDPrUBOGQ8ULB98a0hXcMkMLO3Cgxybr/CItHXVtl6k1DjfS7Dcaq9NQ
8pj6raN2OLzymlE9SHqeXS/d4ohD38cmuxukA7pNTy7hOFwKWUgbIt0Pbd/M
XHDgm1gYWr2VhixrbZ2O7cXhv0cCu4xJ31F61dTqjcP5j8GEK2nl8+5KHAE4
zN6IsDhKOmfllzQIxmGPpM+LXNK8R0N/xoXhIJKeElxF+uD3325k08N+Ti3B
FtKfPY63c0bjcO5zXkUnaac+AS0sFodsTTGbZ6Qf7sg8f+IEDt6M4bGef9/3
vfck+jQOby8vDHf/i5/wiSsiGQcGh8uR9n/5lAgbBabjMOzWWXXvX/7tBsFe
meT7sRI6XEE6YNT9CjsHh4Dpb29ySCfzJb1yzCPzkdPs+Zd/hfItIZtLOFyx
KGDtJd21c4BqfgWHvyF/wsxIT/hxR5kU45BvJSQpSXpV4tZKvXIc+jfn7Zog
/z/NUsaQ+g0cNGb8uFtI23ccW6d0CweH7dt2JJMO+1JqvaEBBwntF0IOpDP5
e+PEG3FIubJAFyf93FLxG899HCLpS77p5Puc9d8tt/QIh3d0NzVz0mJJB+k/
O8nnt2P4zZH1wejsaB3pwcEzQ9zCinTU2PTsuxc4WOe6D02Q9XZeYL3aq9c4
xEnunEwl/WZXcHb7EA4nxr/bN5P1+Tcgp7P1Mw7rOLWv2JKWSW5duj2GQ+La
1ewBsr7dHosGlE7jcCb34vy/+v9o1WCaxMmE6+PdN9vI/lkR+D78OA8Tjro/
4tAlrZjCX3pYgAl97y2u5ynQkO9/zmv2iTKBEtn3mb2Jhr5aL49YyTNB89Ml
nmKyfwWDVGRoSkyQcXZH42R/q6fu2bNdlQnxv2MJDdIhXVfvbdFmwo2Nrceu
ydDQjI1lhhCVCTsMfe8zyHmxNjjsEbcFE3qqLVhR5HzRS8ubX7BkglYUVT5L
gqy3J+PeE/ZMGPH32d4kTtb/7rPG3XuZ8GajBrOPnF+cdm8+noljQlUVl7Y0
Of86WugKkfFMWNGc3zxDzssMjR4vZiITTMMHEtp4yfm2quOTXAYT3NRzu9y5
aQie1I/cLGQCh/joa+YyhuKsz3593kKezy5LeZHz2/Ke0JY795nwZHN79OQM
hkS2JAYWtDGhlK3xM3IaQ0Urj417dzOhRWC1XsQkhojOoMm5QSZ4t/mk633B
EIel5YzEIhNsOku7O96Q9/ftBzoLHCxQESx4xv0aQxnKlIgP3CzQU3nWuf0V
huT4DGZLhVjAKyJxIe85hqBN4aexDAt+LD0LWt9F5me+/Ie9nQUd6m5zyk1k
fGoDZ9FhFvQzFwdczmPI2Xz0cf9RFsicG+9uOYehup2S2aInWLBbKShOOgtD
/rbRm08ms+BLXdLa1jQM9bDNrH3zWeA1Kl/WdAJDVw62Zas3s2CIy44vIZC8
jw7/cvVBLNDQkUo46Y8hxlEV5UuPWOA8N51z2AdDK+OT767uZoE6tyzbgdwX
Is7avpt5x4KTQsEKDQ7k/Vz5UvkuhzOcetC4ydwIQ5eq+aanuZ3h695KWr8e
hn7fMmpUE3CGRcOaRz7aGKq8m2dTIOoMKXdlh4LUMCTe7hZ2bJMzgMWTTVvI
/WVkaKTRwtwZ+IUzjH2WqChR4tfu3gRnSNeJf9vYTEXZHR3D91OcoVMs9krL
XSoqPJx3uPaMM2iKntrTVE/ubwOm17NznaHI6vve6+T+9bkwfoFR4gw7+bM4
NC5SEaaypmKgjTzv75eROEJFC0Zb+T/zsOFnOT3ekNwX+b8uXXwhwIbysnvF
EVupaG3+M902YTZEiyt5lalQkdpihHuJOBu0yviLODdSEQs1NgQosWE8b8sn
b0Hy93dZ+kyasyHc46DP7EdAoc5e93+dZENI3716pTRAqwq/fjBJZEPQWsZG
yQRAlcNhy8dT2ZDYsKaY6zig0aA4E6FzbKh7yL3UGgnI7djFBrliNoRqbzk6
wAZkc+1V+a4ONti/eTGUqQJIZdI6K1/IBe7cnRzrj6KgNp3nNz+IuEDiq4HA
OwEU5B3l/ExJ3AVccDM8gU1BhRwBwjUbXOCDP6/9DzMKWrf2dMJDDReQUXwv
soKHgriNiCMT9i5gk23Nu5BmhoaO63lTzrnA7y0GoJRlijavW5UeesEFCuxU
dLVPmqJ95aO3L190gVQPbRf1CFM025snyF3sAs+GZAynHEwRvyJnbUeDCzC3
6LtViZoijbYnnA79LtAfu33wV4oJil7pV+i93hWa1LCuoojtSCzrwpuky64Q
VKn9pF/YGK18sbYn/LorqO/ZUP1u3ghxSKS3s8vI8zUG6X2jRmgi70Td1puu
EH8oTSMDGaG2K4HpPYQr7DXj8twRaYQO3TLFpD64gpaU8nDZS0M02DNUVirr
Bh1G0VeUzxigYhG1w+35biAmZuDb/UQXaYywfnMXuUFRksSL2jpddPteUhR2
zQ0ko81fxufrog7fsQPNlW4AufSIMX9d9LWpNLy22Q2m7n13aOLSRVsDlIMK
35PnXaWHT+jooDqk6B6l4A7j3Vta3U5oIRS+0UK5wh20JjzPpD1QRfNz3zNk
qt2B4xePTGuyKtI7TLwVrXWHL95RU517VFHpMY/IhUZ3SEx0oQa+V0EZqVev
9jx2h9CnSwYDv5XR3mJlrpiv7vCMjyLoq7gZLY/nun8R2wv2zJcvn7tuQpfk
imRMnfYCx4pCrXc3xFBzzDyH/zPSU3aJWkbCVHlrvgUF3APiJsvio45tpdY9
VU153ecBU+Uyj1lXtlFT25a05Fw9ITvtiFN0iTk1K2Js3963niBSwpMr5mdD
jRGXXb2J5QUmDiFnksIdqGWqPI8jP3hB6bmuqPFzOJV3llMKuXmDuUmRE2XM
hVqidTP20qg3JA3w91Zf96CqepbbLgb7gNpbM+PW9T7UgV13b9G/+ZD19OZ1
wHV/au/V6K2UCF8otrJL9nkZRP1du8dk04wvSOvoiv9NDaXecdZsWmXqB+/k
Y/cMjYVR/wfcRpu8
"]]},
Annotation[#, "Charting`Private`Tag$251750#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
AxesStyle->Directive[
AbsoluteThickness[1],
GrayLevel[0], FontSize -> 14],
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Directive[
AbsoluteThickness[1],
GrayLevel[0], FontSize -> 14],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
FrameTicksStyle->Directive[
GrayLevel[0], FontSize -> 12],
GridLines->{None, None},
GridLinesStyle->Directive[
AbsoluteThickness[0.5],
Opacity[0.5]],
ImagePadding->All,
ImageSize->{457.5103759765625, Automatic},
ImageSizeRaw->{{180}, {180}},
LabelStyle->Directive[
GrayLevel[0], FontSize -> 12],
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 200}, {-2.513827827250289*^6, 1.8783765093294017`*^7}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic},
TicksStyle->Directive[
GrayLevel[0], FontSize -> 12]]], "Output",
CellLabel->
"Out[2640]=",ExpressionUUID->"48d4601c-c370-4545-bd3a-eca6fbd474b9"],
Cell[BoxData[
TemplateBox[{
"General", "munfl",
"\"\\!\\(\\*SuperscriptBox[\\\"1.8170613734312786`*^-25\\\", \
\\\"13\\\"]\\) is too small to represent as a normalized machine number; \
precision may be lost.\"", 2, 2642, 689, 25344311127382663942, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[2615]:=",ExpressionUUID->"9629de3a-fc99-415d-b369-43a9bc0445b0"],
Cell[BoxData[
TemplateBox[{
"General", "munfl",
"\"\\!\\(\\*SuperscriptBox[\\\"1.8170613734312786`*^-25\\\", \
\\\"14\\\"]\\) is too small to represent as a normalized machine number; \
precision may be lost.\"", 2, 2642, 690, 25344311127382663942, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[2615]:=",ExpressionUUID->"d74f779c-0c3e-4d1b-b889-74e1eb2a86c6"],
Cell[BoxData[
TemplateBox[{
"General", "munfl",
"\"\\!\\(\\*SuperscriptBox[\\\"1.8170613734312786`*^-25\\\", \
\\\"15\\\"]\\) is too small to represent as a normalized machine number; \
precision may be lost.\"", 2, 2642, 691, 25344311127382663942, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[2615]:=",ExpressionUUID->"0658cf50-ce3b-4c99-a42e-9d4256326e90"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"General\\\", \
\\\"::\\\", \\\"munfl\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 2642, 692, 25344311127382663942, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[2615]:=",ExpressionUUID->"3a262182-a310-40e5-95c1-8230f6b4c6da"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsolutePointSize[4],
AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwV13c81d8bAHAhDRU/hEpCVhllJITzJImUkVEkO5HKLGQWLi5ZIRnZIysr
GSUr494SJcq89xoZGSFfhH7HX/f1fj3nPJ/zOec553Muv5XjlZv0dHR089vo
6LZ+NQ4XDxZ5m6r027gmPLChKs8cFfDI4FdEwTWiqrUoBUXbtfja819EBV0T
aRSFdyh++B2F7rk+Uo9xDXC924lGiNz0l/lNkO6AodYvyUHEnVQd/dHAApG/
L5Q6tY2j9/O2GQsJ1uiS+mSAgc08slXnKOcetEURlFGvSK1ltCe5oUmF/zaa
dyKD/YENVPb7XrfNzbsoqWnvnxJbeig8GuHywcAJxRI8v3qXM4F/x+jD78vO
SDNzh/l3F2bQ9zwTMJ3gii7Luo6cvcIKwoIxYZuK95Hs5K7MI4LssNYx8fR/
gw9QR3Nx9JgkJ6QJxmed5n+IzFzO5+bP8oDr51+FF5u80MA+9QOv9fhA/eG5
1zdu+qDzeh9MNDUEYPnWCq3BwB+5Rov0fA4VBot3R2+RhR6hCcNu44xuUSCx
6Ux3Lz9CAbHzv+zPiEHKu+zFnwkBKJmj6eElyZPAxN7l/ts+EDHoyto6hUmB
k9363zXFIHTSvkXRcVka1Nj1GfcNEpD1yCLr0J9TMGVHt1+Wn4gUPEqGM58r
gUGd2HPlBSIydWDxaLRRgTr2q4cvNIWh7g+pj+p4AaLrioRMbj5BQte9Nb8y
qwIPUeJQvUEUsma1FF2RU4cu2XODau+i0O0Dgs9Cr1wAwvC11HahaFQVa1ve
7qYBc7KBR78uRyPnGS9T9U8XoXG4T2w84Sma1n/n0vxJB9yJ8zO3t8Uiej52
oRORuiB+iqlkzj4WMXNJ/2hS1IM4opTsqmIcqlIM6XubdAXsToUo7RmMR10v
Jfa/CTQElrBTl6X5E9F5STFlnt/XQfdlaOmjmESkqu6dlj5sCjGtg/u7GJLQ
+X19cYNdN4CTkTDkOJ6EUt1X3BwbzIHXp8exqCAFHar1un193BLi35zR5EhK
Q8/LNgT7NGzhTcvNv7Vf01Dg3qqnaNAWvn+LLLLek47mMwPH7rjegoNLI/8r
90lHtelNlgez7SDlZHifnkUGMjY+xpV62AGyXg44RAplIS//w5H8Uk7woYqJ
97RZFpqMPXxbK9QJxltPdg7FZ6FAce0sHZoTiI4HykruzEZ2XXw9o/HOUCAg
sfFxKhvdq+qIk9rtCmVJPhG7S3KRxKKbQCf3A6h/wlsapFiAVNkuMG//4g16
gelwx7EAXfxK4Xin5AO0h4KdV7IKEFOVyImjeT7AaHd87si+QjS5OlH+n78v
XFCVk6ihFiJus7sOJof9oWP58svZkGKUGeN2ifnnI5h9VddZMF2Ctj3Km06s
CoK/3LNtHIoVaHtQ9oPoCxGw2+GKMoNBBWL/O3PxTmQEcL+rLP19twJN2F0t
CO+NADlLv8SO9ArU9Ou0QopdJLi8ZL0Tsus1+k9esvuvehRMKMiwrH9/jWhc
zz1LXaKhx8TDcMT9Ddr++6z6Z9pTKEmmp5W+rkEWxOcrHHzPIUncL3J9qB7d
l9OZMVnNgMFHYQz7RJrRsN1romDxSwh2DQt1e92KUow9uUIbSmBTeTwTZMgo
rozpWUtrBbj5fX665taBxu5KeQYkVcFLyR5S4GYnupQrn/z5/Vvg+hEmF5D1
BdXZhh64rFYPv+bu3ZFV7UbzS9cLj+5thD/dWmKsDD0o6cCJD+aUJvD5M9dN
y+5FjqkndGpcPoDC6JMdFIcfSGJcqsnobwuYImPGqGP9SKAhrajmYhtUhv6X
uu9kP2ow7z6hoNMG/+uOO/NErh/p8dAqK/TboMXuiwvxXD8yrP/2OcO0DU7G
aFEDb/Sjjo6L7NfvtQHjmHKdZ3Q/CqyQ5jgT3QZFRAEP69V+JP1sT2NZdxvs
/FbPTvvXjxj5xvg6v7eB1RHzVxZMA+i8urrd1EAbcFckjd9gH0CFTzSK9o+1
weNBDsNrEgPIyoxuVf1PGxid3CF92XIAScScGmbf3w6b36an5doHkCL7tUt6
V9ohZkexlGrnALq4QM0wMWoHIQUn98u9A0jvorm8hUk7XEpeorcZG0AhJ2x4
LKza4bnVxoHobYPIRfFwsbRLO8jO7dOYVhhEpP0tIgLR7WC/UzorNX8QWSiK
CAp+bId1haXJ/NJBtDHK97T8cztEOVSeqKwaRLW3XQXR13ao7FCs/dgyiHY+
/ZJ/sa8dGOPOfVmlDSJ+Zt8TMhPt8ILfkM7g0BD69+KPtSYDCboVPUx3hg8h
pnqJXUFyJDAKHfNJihlCce9cV60USNDbeyVV8vkQ+qgo/EBZiQR9bhI0g5wh
tKlJYJs4S4LhYtqt9PohdAkMWtkvk2BK4LKr4p8hlEFfktVsRYJ/uwWId8yG
0Ytnji4hYSTwN44s+GczjNI9Q2nLT0hAn7f+McZhGImdkuywjCIB4/lelmqP
YcTxQZJTIo4Eu/3C47Y/HUYCod3Xn78gAcfictqL1mF0c83JqK2EBHEzY9ft
uCnohFb2svcXEriEFJ9dOURBBmGcJlndJNA96i4ScoSChO1Xw1p7cD7jnYu5
whTEeIrfeFs/CXybjxN/ylJQ8+6oMNUREtgmOVbZ6mF/YplcWyDBOTn5F8sG
FMTdp/t3aIkEfF10gYRrFKQeWNpdt4zngylGJ8ecglje8/c7r5FAx6VifOwu
BVlniYplbyODvOYqx00iBemyx/oCCxn2jzasLT2hoNfrxl8orGRY8CVSAqMp
yLh/ZdybjQyFFYcKsxIoSPa6gV7efjLw8amcG82hoAL2Br6Ph8iw67/HztZN
FMTK3m1+QYQM49FaVxdbKKjHLDQhU5QMzeIcygEkCorUHgj/e4wMvlbZOzO7
KMj9y8ncF+L4eZ9aU2nDFOSzmJNYKkWGvqw9HZbrFOTK3A67z5AhKtH+APUf
BVXe5WY8rEQG9agWGwsGKjrSeytHTJkMZV7+f812U5HxM7FgJUSG0CtLoqbc
VMTE7Fcufo4MKhp6bv2HqMj5AJ09rxoZlpSL35scoaKTB0b/Mp8ng8UxOyNj
YSq61MVd3aeO54duIMBIloou1qiHq18kw+wf+c/fTlPRtiNTIlxaZMiajjto
eIaKYjyiU0ewWXt1SvVVqSjir7aA02Uy/CxqGtLVpaI/J5ycr+qSITmT73in
PhVRzLkmmfTIcOW5z32dq1Tkn55+pgy7LvD0Hm0zKuq/SnVav0KG+OsFClp3
qGjsexe3uSEZLuntDCI5UlEOu47NDDb9hZudmq5UpBP/MdTdiAz3pI/c0nhI
Rey+9lZ+V8kgKOpd1upDRQHfru/fwO47/GND/REV3TZeSn9wjQzndz2NPR9C
RT/d2y7cMCbD2ubccHMYFU23DlmQsEuWLompRVKR3StdfRkTMvBQmBpV46lI
2HRH8wr2l2/WexufUxFroqSq4XUyhJDrr51NoaJaiwfPi7CXKh/OoSwqYhQ+
/VXPlAz5hb2K73OpyMMi8XUKtkWGLEGlgIrUkhacxrA5E6K73hVTkY3l6e3H
bpDh45NZHuUyKjooZ+lih/04QMvu7Wsq2hFnX5WJLe+ZV36mmoqMFi729mHP
3tv+r+YtFbnV0H3ea0aGTBuri4r1VKR5JThVCfuayfu46iYq4uQa0LiFvU+X
hyrfSkWPzDZIT7Cbz3uKV5GoKP/BlFAJ9sMzPe6nO6job3amcQf2SSmZpsou
Krosdtx2AntcOGqf3Dcqoin7a21iJ/PMGL/+jse/9+UuVnO8vmwXs2UHqKi3
IS/tMLZfvPeQ+zAVkZdLI4WxCw++4qqlUdFp8KGKYf94QdXdHKOiNnXWeAls
pqMcxLOTVHTe0bloKy6Tq94U+IuKEvpyRbb6W4h5rrfO4effrGXcyh/+quAU
8yIVaeVXqG09v1pm6J72MhWpbCT//Lc13jesedGrVCTr5Dszjc2mdI7avY7r
rdPaqBsb1d8/yE1HQ9tfXhOoxr6jlqd/nYGGElTs9RKxn7f1hb9goqHqpxkj
7tgtl/a2UHfRUJwt2w897MVO9E9wLw0lSrVKiWLzGbrI27HSkIZY58waXp/L
P7KcC9hp+L6vvJeE/fBGb/4sJw05Sh2JisPuvql0+P5hGjpOCa7nx942dc+o
io+G2Ipl7tFwfUjeS4/8e5SGBi1e+KViBz9gon98nIYUUuk79mFXrMmf+SBB
Q4acIswNuP4ovg5uO6VoSF/TotARWzG4czziNA05fL53qBHX7+yzRHKSGg19
Xq8sPoPr/RDPJ8bhCzTE3yHH0oX3h0baP2UBLRrS1E3stsLOyLMpydPD+b8/
ivDC+8mwWjLutRluLy/d+Ajvx8fKlh0rljT0o+DY5TUDMhQ3PN2hdJOGUjvo
VRyxd5JWPBsdaAhx/dTT1ifD275Gs88eNNQZ56VOxefDpNmfZ2zeNCSg4seo
jM05ItJl6EdDO1Oij8XpkMFpOvzcQBANLa4QXipqk+HoupHoZAwN9eWbBpng
84d4ePo3fRENtZhads/g800/7oR/eAkNTWzKqm7g849nr9s+zgoacvEb9diJ
/Wp9/fixWhpiVBo7y3YWz3//Phuddhoast51cRGfr7yJ0j1JYzR0jcDiOi2D
z7P/udsITdKQ9n7rqDfS+HwIrV0o/kVDGV3g5YfP63OeaiyNizRk83uyhv4E
GeyuGWlMbBtBK0GG0z34vC/nfFgjyzuCvHvXzSp5yeAdUadRxz+CAnn1fdFh
fJ4zMfReEBpBjINjTs34e/L9T9iiifgIshvS7WrgJsNmd4r4I8URlJFhSyTi
75HG04YXn4xG0GyDjKLBdjIMsOwKsI0cQTvHq/PJP0nAw3n0X3nMCLJi3N39
e4wEpjzKXtviR1DhqJItxygJBkWdXZOTR5DwxmqLNoUEQ2d/WH95ifufbwlK
+E4CiutLNZXmESQu9s3Ev40EY72aTJyrI6j7WH1yVjYJhIesH1uvj6AQx/aG
a5n4+zzqs1nybwQlZ+aY7Uonwfh86bIW0yhaK5ndZpFMgoldB38+Yh9FO6Nu
bNBi8H3kzFTrjMQoyuL2R+BHgtlUYugHq1Ekdyy/97ohCXZsU3Cgtx1FNHW2
T0VX8Pfd6uclZD+Kun+33VvXIcEVQTXWasdRZCbqUh15kQSVeRvxhd6j6GD0
Xu8IRAK/Uqesp/GjqHiaeGZGlASsTUbvLUmjaCWOf0FmtR1kxgX+bEiNIT6e
lJ3MUe0woTgi9ujUGIp9J8V2NhzfxyIzrRgVxtAKQ5K1a0g77FQQ7NwNY2he
rJ360b8dhsKECri0x1DZVJ+tvnM7EKVELaVuj6GWF5rOr/TageYt8ckmYwy5
WPfk5LPg+ye7fDaZbRzRrYp1TPq3Qd3yp3Y2znGUvDKiSfRug+kf1rPGB8bR
yanpZhGPNlBLizw9cWQcaawOvDV2bINl8Z/tjBLjyI1lR+fzG21goh4/q3xh
HInb7LYJU2gDAc+l0yVe46hbNeHemblWKB0qIcWO4uf5HqfuvtIKU1E5sout
P9FAEVsF8fsHMFotYxDLnUDrPHOTMorN8PifgIaZ+yTi4U9yXIxvhLZfLF3C
xlOoijhJOltRDx3uFp+nxKYRJYKpLqHuHeyobpUOWZtGwDPGy7O/BkyoBX01
fb8QqG9/9upQJdzNXfxvomAGOZnaj6c9LINEgyrjwohZlBaXbOzrVgTBqZST
DlZzCExtPer+5kB4Ulf0y5vYTfGTuSM5EPWsceGn3Rzy59U2SybnQEJkVoWN
4xyiY4l9nJOUA/l+dvJm3nOo/tLszrNKOdBhPo/04rFtu18+98sGTj46ndMk
3P/QQo0kSxbod0ZWbjswj+r33/RKMUgHQY3o/zUfnEf+WkFDNOV0WHofc4fA
g/3wxLC8SDrEvooTYObD1ry5xrmWBj0RSREcIvMI1vdapaSlgcnlXFuRU/OI
bk4mo5GaClakOs7LetgjnPkuyikgrVrvzKKPnfQgw4YjBRhqGj52GWAf11r1
mk7G/6+bHxtdw674qnEoMRnGQ0iz5vgd/OlyePlWk8D+Qk+Ly10cJwYoWNQl
glPzzIOEUOxCJcc82wTwZuhrUwrDvq/7YE4tAUJUWw5Sw3H/I311JkcTIK3+
Rd2xKOy7lMAXlGfQ+VaHqTYeey/j2qDpMzjxujRuMBM77aO6oWk8zGbfrxCo
w/kYdRN+ucfC2qglU+t7bBXflgWTWGAS1L7m0IDbX5Ro4VOJBd4M4fXyZhz3
zSxaYowF7Re9586Tsb2NL/jFPoXieIWvt75je23bq1AbA3eDN34XLmDvLTVi
Fo0GjXqXe25LON/o0S8a+6JBYPXn1Jll7BIHs+qlKOi5/WWEtIrbJ98B2cYo
UNHO/TZB9xv578q9FGceBaz79aoFWX4jujiyvZZGJExdbjn1ixWbOWFT61Ak
NBPOlJWzYT8Vd3szGwEeK0IFqpzY32tlOuMjgNq/lmxxGHuXp+3/fj2Bsows
/2Qx7Bo56v6CcAjvP7BhLYH9KunxRGA42HJEeoqdwN4W1n3cPBwOEjxdaqSx
O1D9P45wCLDXtvmugD0rLLcYFAZmGU2U1DPYNpF9WtZhIN8vf+OWMvavtBTO
s2Hw69JRo2XArt5dxbBJBIOTKxc4NLAHishqPkSQtL/b3K+J/ffFgpwZEXZm
0CBTC3vcPz8FEeEd+ycFaR3sY+47SAxEEP4vXUzXCDvemS03OhT+e6fFEm6D
LWUS9KYpBFQEw1S0bLHbpr8HFoZAIJF0d7cd9jxRszUuBNiuan4MccCWM39V
aB8C4vPqoUEu2FffdWzjCgEXI0KVmhu2bpGWP0MIVL/98JPhAbYYl+qD+WBQ
D1VTf+yJ7VZBaicHg4WAKoOfP7be2nOukGDICXkkrfIYG6SlTDyCYWa23nIj
ALtHIoPTPhge1qJ6r2DsrBrVTa1gqOf3m1MM3VovLubjKsGwI6SOd42Inds5
1HkyGGINlH08IrAPPOuL4gqGvhrvwtNR2Ha/kvKZg4Gf/23/cjR2pngS0AVD
8Yyi4v04bNVcAm2KAH/0H9rLPtua36w9cxQCKNVUJywmYBtyMHr2EqCdIP+f
czJ2iocXUwsBWGfchaVebNVbYdzuOgIY6b8xnE/Flu00fFJJgJTq5cBX6Vv1
cmxX5CsCjB6Rq7iXiZ22b4PlJQGOE+6PSGRjHxz1Zc0kgPOvCraZHOwy3oGo
FAJUXVk6W5iHba1qFZ1AgM0qGWeHfOw8mhlbLAHUjrimHS/Edsk4whFFgLCg
ss+TRdj8sgvx4QT4Mv17M+8VdrixYFIoAbivSEnalWLvGWXgDyaAWZXTDZFy
bPOKIdEgAmTzloSPV2A319CXBxDgV+BcbXblVv0uv3v/mADS05LTNlVb9e5h
poPtoXfvoGANdqqptBX2+zdFmiO1W+v3JXgFm4l3xiPjHbY0dxFbIAEuBYrn
Wb7HrvKcL8HPi5ly6OVrwO7WT/uKx/NDt4CJ0ojtzsbsRSQA35upU6nN2P9O
+uU+IYDt4eM3zVqwNRW1jKMJUBhgH3u4DTuh7V1UHAEWJ/OaBtq39muQkHYi
ARR1JxaSyNi0413RqQTwrxQRuP4Ju86fxTSbAK08t/QOft6qT/MTRQUE2BeQ
4/+jc2t9iv2CygiQpCM0fLUbm40487GBALw+OttXv23lTzbIbSdAWr6nWGIv
dhTp7koXAbK2d7gP9GErFL75N0IAYZmVFJ8B7CAu+8oZAuRZCDTzDmEv7OkY
/Q+Pv/YBqyV16/2CKl7uDQbJyTQ5+hHsD7xv4EAwlHCSTTNHt/ajg6OuUDBU
OB95OfZza747GPpx/b8VaTt7exZbZaEz0z0YVAwXbjHPY98+EL8jGO+XxzwR
hb+x/by4xuODoXnQqW92CZuTTZ+jKhg+Pj3g6voXW5/xkxJdCGg3nHvOsYGt
KP7Uhz0EOmfvvn+9uTUe+iNnREKgW7OReWXbAqITNXgioRsCg/9uZ3nvxK4/
O7ucGwIWEnGkw7uxi9WZhd6HAM3k/XwdM/bZ62tdPSEw/ppdeRsLtlaj4csd
oTDr8PZb0H7sRb9Tho6h4PR8/K8wF7ZcHucjYigstLAKtHFjm0v+kMgJhWX+
m/d282BP/djNPBwKm717d0QKYF8dNes3IoL/dnmJk4LYKpSQ/Q+IQC9jpd8l
hB10P+dLHBGYIipT2Y9h29q19PQQYZ+auXzCCexzo9S95mFwpKTEPl0Je8f5
384h4eDUa11zUwU7IXTRsDwc6jc5mY8DdkVc//ehcLC47FNYdg57ZrD87ekn
kDGlOdd0ETskf2L77ycgKDTiNn4NmyJZMfkoEtwuxX/IN8EW+2k5Wom/R66a
nI6m2H381wJ+RcLNxldv/jPHfvPoba94FOSYe6/tvLU1nwJMYylRIJq431/s
/gLy9xA2yo+MBo+Gts65Bzh+X9XQ7FU0tE148Vd4YNtxSN/6HA32p2mNSt7Y
KVdkPVhjIL+7eLt2AO7PonEsOT4GxFk0wpyisX0FLNjKn8LJwIfxr4u23r+W
flYiHt66cA9df4XtfyOy1jAeNCwrhehLsRVCx3t94sFcZaFCu2Jr/cIJGx3x
ELFi//VnDfax/z2hu/8Mft0xZj3Yhl0d17K9MwHyDOWJvjRs9SeN+5qSQFat
p0twFPuHa/f6UhLUS7sdII9hGx25rCKSDL0sJXlck9iXJ3a8DU8GJpJIa8kc
9uPoqpzrKWCjwsU4so5dON5svCsV+EWWfS5wLSJ/1feUF1fS4eA5M48xbuwA
noKrTunAZt7iEnBwEdGZ/iArRqQD/bP4W+8P4/io0DV/UjrQmE7rnRbEce+4
mN3nMyBr3F1QRApbyPOSmGomCOeskpi0sGWKjXhuZANvo+WHrEu4v87XQVV/
fL8can+vqo2darkZl5kNTJyJFb56uP35HwaNU9nwM0jxxfJVbPNXV0955UDe
TS/ncRvcPuhwY2xWLogJbXC1+OL4IRCtOZAPC4qzSsH+OE5H1mZTz4cq3WFL
jcfYduVF6S75oObdUEAKwu2JXa62H/PB7GsQ+hyO3Rn1lvi4AKIe7bv1PRG3
V3MW0V8thOXBI5VTlYuo/uXS6w87S+DtImt/QRWOx20L8BYogYBd9HR3a3B/
vs47ukolwHpqVHPu3SICKY1WHacSOBaeN7jYjNtrSvwq+lECpopS2ze+4PaO
wWkLpaXQGK9qwDKH808lOy16lOP65nUqm8dx23r3O7Hl0KK7Fma4gPPVn5Sg
KykH0u6ypqQ/OP5Jmez+sxy6fPllRNdxfqbzs3lXK4BiS8d2dtcSAmdSziHl
17ApV/fZ5egSonu7ZzyU5w0o9Cpo9VzF8XVyVsuJWrDKOSqUb7yE/Mk0RWRU
C8T7e//5XMdeNDs34F0LfezUMiFzbPP0sQBSLXjrhhy8b4v7FxKYwm69hfr2
nkn2+0uo3lDcKyjvHWi8dQ3Ri8E+y9uncbQenMJuWAnFYssUufbJ18NzkwtK
q3F4PJvMUn7a9TC1cnA+7TmO6/bJ0j+sh/BTjVfn05ZQmor1ybmuevhczCoS
+WoJWUgoezgENcCKzxqddSmOE9lJ0skNwHd5tE+uHHukuXJveQM4Tb+JGKrE
+bozfTcpDcAmar4sUYf7v6RP/KjcCIr/aXRuq8fjr70WK2XYCNYt0vnfGvB4
fHxv5t9phAobJjOfD7j/bc383qRGGJCZP63XuoT48lbFw8sbYTtD3/+E2nG+
6sgsA3IjSH5pml4h4fieWG6pkUYwSi/68PEjzi8XFcX/txH+D+NWJE4=
"]]},
Annotation[#, "Charting`Private`Tag$251804#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsolutePointSize[4],
AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwd2Hk4lF0UAPAJSbuyVEKISqoPSbY4oSIJZamImbGnpCQUNaESQkR2spQi
2UniLevMKEtERLYoyp4Q+u59+6fn95xzzzn3vts8xOkXT9hyUCiU2SUUCv5f
RySr84WXhToF/3P5XvZrq4RHsriKBqbP1qLyBw7VNxzFj5Juik4rj/z6ppsS
fRKbuNnzWqMvYCOHvvgZ7DHb3BaNjbGvHtQZU7FPPYd+jfIxu+SJKGsy3uow
qmF3mD9vY6cddluZwLTGqri3Feri57AbOA8saOSOOzfb2F7ADtgVwQGZW4Mv
Vxm7kPWWjnMD40P/tbbpS9i5UgUr4aSnqu9wlCs2+9xlXtgmGRa4qOKG/ebu
QT6Y+/A9fF3nVQ1yq7qCkCQZmbpf/Bq2eQWXCLjW/8w8WnEdmeHy1kIMDl/T
Kjhr643jXYLGEjBtP9P71piB4zHTUduA+marPVvqFo5/4hzYAaz1BsPN09gM
kc0GMhD/Jm1yMMoXmXCSVpEFbr5G93FHP5yvtvBIDlwc5v/OqdzGzrfi3Ava
fCe51nTewfmlYRyKMORAEVAQD0CG25uT1cC4TCb6wAQ25XeMkzqU8ZmJHKkI
RO6e1BMHeFD2QuqM7X3kpLOhqzRBOGD3ZsI4FFks/aTCYWhU0OrUfoMNZ3cY
HIE7X08lMqUe4HlDC110YFTBb+vHaWxCd6DmKLz72i4zEBWO83XKqwzAPWDs
17klD5F5/7ICDGHXPu7sUUfSTr/3GUFEgJzCrEoEsmH434gT4LDPX21VZyT2
xEMvE1gbuE9fXjwGmXquvs8cDJ/dy7kVhj12ubnRAsJqOgUaOWPxPMvTK86C
INedrosD2IRIaa4ViHp/uvgiIx7Xmz3wlQaRRaq6/LFJyDv2JWnbQVG17d/X
H7HH9t/4bAdtLSEvrFc9xufzbauLPQhN9a3L88YmNEuSHSBeNqjdiJqMHLWT
KewEqc++OIVIpSJrJ1yUc4GqYm7R/ZakmxLuucBAjWxDVyR226O0XhfYMeCn
sIcnDTl1j/KjS5AhsXuhbgg739B1hSvkxnoHr8h+ivwzfnTjVSDui+bcVsnA
149LrckLjPwew/mL2JU/J9S8ofeaZMOJVGzjNWbp3sDlsHN0y5pMZCVBqVs3
4Iim4u6SHmy6uZ0IAz5M6z8b8c9CDnu1ZPAWjLwsa8gYzkZ2WB9ZfBv+bhyp
5VfJR/6g63IkGFY4nTjAaUx6qV5IMGx8U5gzfgH7KNe51mBQpN2M+fAYu9LJ
1SEELj/jPe+/vAC57+Hg4VD4rrx37XwbtuH1hcsP4NMZD5M+9yLkIsGgvnDI
juPozSkoQR6akJKIhthdN0PmuwgNCqOnzW82GTpvBXKu2V6JnH1fKusZ3HUN
vHeloAZZoDHzbTYsHhhIgb1s5F/7Vtbmw5Wb9eFzVz5oUIhAvqHYYni25xPL
b7FBgwLcdDuiFDZ8DlT0TW3SoHSXJeRpE/Bz1Pm8gmYz6n/80dPV7+B3s54M
L+cnDYpY/juungrw/j3a3JvWivL/2Hm5VoFy//1l3U6fUX1mtNx8NVhonOYK
le7QoFCDIUmvFgrv/UlcI4vcPV0talgL65ojVO8rIlO4jWKMa6HaoelygBZy
0unz/mdrQTZMr8fvLDKw0uBiLXB9O1Dm+QDXazQRC6uFFwESHtazON5uFdlS
CzwtBF/vP1zfJSrvcy3Qt1i9pHJ/QfU2Fr/vrIWN+bEDZ/mQGcrPZr7Vgk8n
v8mp3ciwT1V6uhZMZZfJ69OQqSttpgSYsNgyPKzIxOttRXefZELYsiw5zQa8
Pp5P0YwJUsou7vqteH3hIVVzJhyLm+Kw+Yb9wkLFmgnR9IVND5Z0ovxOlZWu
TFAYXaMzrIwM/f3TD5jgyCOfmvgcWUzLf7SOCfPKUz+e5+D4Tv0bDUwIdSr8
r7AYuXtIbnkzEwo/qLyuq0amxJnxdTCBK0Kraba3E5/X/Mx3JiSIm1CMN3eh
8782ycPFgmYVDwueIOw3qxX3s8D03jfv2DBkyqY1fCosaG09kbgnGplxNOqn
Ggvar+zuNX6CDJ+PRGiy4GtWr/1jAq8/x/lGnwVDEvquKr+Ru/+et7Vmwb8V
EgHnLb+iOEVRMIgFjNMhGf9skJN6LXyDWcCRPl8X5oTM0Jv/GcoCrkOta195
IFNKkgsiWLDiZlDE0nCc78QQTmQB/+R0UkINcnc6P+SwIOLXN3OHjd0ov9+1
o4kFl/2zDs5sRmas4VjSwgLDre7b/bcgd4eekWhF9U7zTD7dhkyNcjjVwYIb
lTsDBhWQoXjoQR8L7GIvFtsZ4fwuIZVJFmgpKiVMGyMndfIJ/2aBWCPF784p
7JD62Wl0HtxhBk+scD/d++lzLDC4nD/w7QKeZ1Dg4xI2KOnO8tsGYDcvmK9l
g0D/27mp+3j92tFZXjZM3Ajo9nuATY0LX8+GzPzNmalRyMRb6RIBNoiJqWv1
P8HziS5t3syG5X98LllX4HiOs8p2Ngw80DObrMbmng7fwYbKXfwHfFk4v2Pv
D2k23KCn8aQ04v2+bbyzC/V7X5PY+xVZbPx+sBwb2lNXfaDN4/lyq+tV2BAa
47ip5x9eLx72VZUNh0OrbaicPSj/8P5hNTbkXmf8tVyBzChfPa3OhnsnpnZY
bETu5vr2WZMN6jpGVzo29+D53Gu12DB1IKv8zBZk0O3N1WYDVdrB9PQ25CRr
9euH0flQvviaKuB47qp2XTaM/Faqb9mP4xtOPz3KhtThCCETVdz/83UXPTbw
thrknNREprzWmj7GhsEXFV2GhshU9bZ6AzbEpYjtbDhJztd03ZANJ6K93QzM
8PpjyVuN2FDmt3/VcUvcb7Tc7gQbIs0zlPXO437u4yXGbDhmxHObdRHH6aGH
TNjAccS2QdcV99PmrEN2lt9ir3MN97tiU2fKBskdXrk13nj//icOm6HzFPm8
cPgW3r84fynyoeXhDw/54/Xu62JPsWFucfRrZSCeZ4k+12k2ZE8dk9EOwf2f
mzsiC3dzv9OMxOae2HaGDU0t1qvfRWPf97yJ7M8mTh2Mx/W6P35Eniq8NqqR
iudJoLiYs+F5ZqtK+VOcP9BUhExNVrijnoHjhe5/kQWjHjS+ycL9F0ZULNhQ
d39E+EAunveF0lVkH189h9ICnF9i/AJZyTM9T/UVPs8NWt3II85L/5WU4vMp
4Vx7lg0pNvSjKgSeJypSGfnUmfKIVxW4fvpfK+Q1hsI9SjXYvfI+yJWHPHcV
s3A9dbUk5Guqn9z3f8Dxog0lyLJyeysKG3H/w1X1yAPbQtcotuD5vmv3IMcJ
/zpd0Ibj0ZEjyCfWH01T+IL7m5X8Qb4Z6dXl/hXXc/SaR84UernhdS95/8Uu
IH9O6DFc/Ibr/RH8i8y9lT/g4A98/a6MTiHvfXq4wu8nXl8hOYxMlfGcrxnF
8b7CTuSglxn7Vk7ieh1pdciv9nY5H5/G+8kcL8LzFvGmP5jFtohJRF6vptXT
PI/rjSX6ImsQbkIbKb1o/QUOG+Tz2uknzTmRxTreAnJ0bXtQAjdyN3RtQq4+
trq6Zzn2E7NRdP5iJpeVHHjx+ke0EGT9z6mXMviQiX0Tp5GvnW19PiKI8/9+
FUNutlUTcRNBZsh+TEHXf8mQs2mxGO5X3GaFvMf5ccjfrdhxqhuR717l5vDZ
iZz0ctMNdH/lzympVu3G/vdQBrn7htMVHjncf+hCC7pfVe42DATvR6a0KIki
jzyKYcdqI1OF9vmh+3+z8Huur0fwesNEfmSdpH8HJPTwPG/tH6PnJzndJjvd
CM+bw5eNni+TV3siCizx+rvtj0+i+/EA7cMMDa/XVRZAznobvkzNFvcT+OOH
nl8e1oznOydc70DoafR8l7a/s6z3wJZTaz3Ohh+Wvx+t98L5kZG7kQX7tjea
3MT9KEYMfTa4DAdpfbmN9391QAi9T7bOm+74EYb7tT2SRO+jAJHhcY4XeJ5K
xQD0fjsZ8R8jKBvv/6RB+EH0vK6+skYwH9fj3BEFbHg5P79T+jXu90ooAr0f
mzvW2BgwsXeuskDvV9EY+U+x3/D1kj4lit6/g+vcbaR+YFeE9v2H3gf3Xk9k
/cT1n99P3cMGLU/tte8mcfxuyyb0/nY4ZarzfUkfvh5pjdvYkCd4rURBFJmo
Db2Kvg9ewWU6ZeLIjFt7Zzah9zc3Z+sRKWRqdqLbRja0/Q6cPLMLmdLaYo2+
L4vN8btuqSCLeVesRt8nnfC3Ce9NkWF65hH6fn1Zu9zXLgS5+9MTf/R9FBbc
+i8vDNs84UkPCyyED1xfEonrq/4mvrKgc8cl17g4XD/h3RD6vnYd/Gzd9AzH
OQfXN7Og2/WZtnolrn8/p6CCBd9adbkFZ3Gcw0AniQXbuqx9rOdxvHHJZDz6
Hvd7L2b/w/4uHhPLgoGxnGk97n7UvzejM5IF35cLDd7iQ04qm1K+j35/qA7V
/NqNTL3KOuLJgpHEgHtVdBxXly09zoJlS5SdOOyQxSj+nMfQ95w+eEzDEcf7
GUd0WXBCUpv31UW8Hk5VabGgMH0hMtOrH7/vMqOUWHAzxyU1PBLnm51LEGdB
1Potdxqicb7ohmxRFuS6vrdfHY/nW+9ctpkF/ft2ytxNwe4QbhRggU5JX861
bGRKePCH5SygbQ4LL8rDcYv4Km4WXPMCt6lCZMZm81ecLAjvHDGVK8H9nWqf
UViQqR6v5PwGzz/wLXKBCVWJekIZBI5XufAsMqGLMvd3sALPM9b2aY4Jf2jp
nZI1OP/JyuQ/TOCtMC2nsXB9j+XnppggLbn0ccJ7HJ9t2jPOBM3beT4dDXi+
IoexX0y4coT3sEkrrqf013GQCZ/ZzDqdfpzPqFNsZ0Jys1r7f4t4/oqU/eVM
2Dsg8XtB7hu6H5c7tt9hwneVPplb+5CB+nvIB/3+DEmhcykjd8s0/7nBBB5l
yYYVgCx2M4jbHc0fKJWx4TjO56XM2DEhQG4HTe4cMsOtQOYwE3q9dr+3Scbr
+VO+LEG/t/mU0tjrB/D5iMY410JOVzbrYT8yQ2qFw/4aGAp9ojBZM4ivz7Lk
/Cownc3llHn6Hb9/d19fVQk+/yR0LN1/oOspOMxj9Q5qf65t3HZ6CO2/bCbn
IgEf3Kn1QzLDqJ4SnVPoDSx7VSPvP4dMCAQ7Gb6CMz0Z7SXtP1G9dRm35Avg
wtPJP98zfiGnhas65ECMcfHpzOARtF5lZ3j/c7ib2C3rRB9F9YfP7/ueAicb
QgqXbBpDHt/3JjAWJHUerKsUwk6RKzgdC1PlYefvCGMrDLO2x8LDlxESK8Ww
dwkYVsbAp+DYYP7tpPMqF6PhjP5Tu+37sN+nXvaMAjqrTFDfCFvrRPmdCHCp
/HU16h723MRWnlDw4myvVQvEjhGOehcC/prVQj1B2Jeld7qFQBKRUCYdin0j
nr8jGBpKDbhfR2KrtfE8vw//FeREdKZgh3EnGAfCSJpbvkQZtuiK2c47MNdP
464px2bZ/Iq6A9ySx085vcVOd9xpfAdEk7fN51ViMwxusm/D8YRWrUNsbNm4
mDd+kBWp/NG+Dft7X81LH7hwd2E8cwJbJ2F5rDfoEJedr0yR5/N+qZA3SMwO
DqlOY/NLvYn2gk/nmvpYs9hBD6xir4P68act3ynjyHXyvk89gVfA6JXkWmyd
tMo+NxjSr973kxc7iFrk7AaVd1Rz89aPk3+vcp67Ah4zUhmagthKZjL8V6Cn
Yy6OKoLt4jFueBlyk1MZcTLYoeqW3RcgqGPTgvVu0vYmay+AHX+Ip8x/2FGe
gxrnQeiO5+USeWzq3+60c+DreNymTRl7Zlb3tj0Yy84c4dch52POhNFgj+OF
yg5d7DHRnV+owJPcCyl62Lzcy7dT4Q3fe2V5A+zsq+m+Z2Hbn8cyhqZkf2uf
Dafgzxu9tUE2ZD/L6Ro9UJcMVNezI/e3I8ZWF/wCWBdWOJAeX1x+BNab6db5
O2F3+4jYa8KuscP3bl/GJlpPD8gDVUKT8yaDzD/TlraLeOJ/S17dB5thpaMq
T/waIWgLvtiQ9UBAkbj2WoO4fpdcL12TeIB4aHzA2yOYzJ/q4jpMMO8o/bkU
R7r+d4ARwfvLfZtcAnZDR5beCcL0ZJHJWCK5X98ynpNE/xbFfOcU0g5t7sbE
YvHeS07PyfWtBdJmhPYW16SdmWR8ZV+dGRF4O7f+xwvyPE4Znz9FbDwht8ch
h8yfmU08TcgP7xm2KSbz9/K2mxMeRs5CkiXk/sRFrCyI8qIXun2vyf0Emndb
EMf8dqXTysnz8bJuPUuEDTm1ir3FTjLboW9JfDbM4O5+R14vY4FyS8JOZKet
ZTWZf8rykRWR6ev4UKQWW+xlwYIVMfkjveILk5yvT0CWSjAKt0uYvyfvF6eC
ICpRI2xvJFRPxu9vKKYSa3yfMD43YPtb+PVQiVgDqa9mzdjfj3ruoRGi3gZL
Z1uwHTZnGtCIpOeeMjGt2LWp2y7SCIm2FCPVz+T68cEgGpG69IP7l3Zyv6tG
02nEtr0z8d5fyPtlUaWCRqRTJSpFu7DTm1gdNCLz9VVeWg95Xjq5y+jEnh9J
ihx92Kfml22mE9mCbIuUfuy24vhddEJe+7eP9gB5Pe9cVqMT+Ze2PPs2SO7/
4u2jdEIxUbf+zg/y/K61mNKJ4jrX39uHyXlyaTQ6oTIXv5n5k7y/RaTP0YnS
7bUHz41g81TvvEQn1E0m7FeOkc9nnu1VOkH4CAdnjpP1f7V50gnN7MP5+pNk
/eu+1+lEZadL+8gUuT87G+TDK2MpodPkfPnXUH6tUtU2uRlsWecqNzpx1G70
WNMsdnG0lgudqAvf5Or6F9tQfcqBThx/qxXNv0DG6Z+s6ETDyIXygkVy3tU/
jOnECeGob6aUCXz9Dsno0Ilm3XcrZ5ZgE7xxynTC1P2nXDQntqybijSdaEsV
PKWyFHvMY+kGOnGmCW50cGM3iM9z0InOf+dSvXiwDd1EftEI6u4IlsgK7BkP
hxYa0XumfKxsJWm5L69phI3/D0HqamxGmnsSjRgo4DuwZC22R5uyL41w6Dtg
ncyLHVUvbkMjhngd7mmtJ/ND9mjRiBGn0pbbAthK13P/UgmX6IG/2zaQ/V9u
b6ESE9W8ErUbyX6lbzKpxLS4rfMKYbK+q44plVhsXb0sRAI728xTyopgLFXa
LSuJnSSoUmJJcOyln2yUwuZ9vUvPkuAOLkzkkybr1yTSzhJrtK2Uov6bIN9f
t6nmROile5bKcuR5lMZ/OkOsT8zza5cnz1ekTecMITi3rFFYkaw/8lz8NLEl
O9vxsRrpydBUU8Kl1brEVp30Jr5fJgSxKLhyJ2B3G0/LmhBUfe/MXC3y+jS3
PD9JJA/pjlYcJfNpOXaGxMS6BQ3/Y9ig8oPPgNBUzg49dhxb7AePkT7Rd1dQ
vsWItM2/LF1CUqrvysApMv+90uxB4sqxyKrnZ8jz5ZsY1CAqXXUFL1qQ8aQT
LFXC9t3Loj9WZP/kAJO9xBMrrzkee2yK/1G9mfIdMQIMGTdyXnjQowkeb2sb
Rq+S84mo+xyC2u/XxfM9yPX/3u/SAcf9ve/UvMj1rzIS9eF5c9bS477k+RV7
3DCGXWt1Al0ekP13hNhRwUvxb4dCOHk/PO5TpEHd2axdsw+xazuqltPhQib/
h1tR2DrtSkXWkKXbwxueSO536aKsPcj6XYsseIHtML/7sTOUXt7YZf6SrNdv
FHARdGiFUhw52PNcPSouYKU+kX88H1s7t0r6EgTPOH4cLMGus3URcIWf50/z
CtVi+x2uknQHD/M/ZgSTvB+95zLcgetoRKIdG3vVfUsFD9i8vXFP3gdyXscC
HU842qOjf6yF7O/x4uZ1SDdRCrjRix0p+piPAQranxol+7FX+H2kMoCQv7KJ
/Y3ML3ucxYDWtdnpG35g535Yf+wWcLO212SPkvlbDIJ9wEZ9A1ffPPaXamfZ