-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevaluation.py
102 lines (81 loc) · 2.93 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import logging
import warnings
import os
logging.getLogger("tensorflow").setLevel(logging.ERROR)
warnings.filterwarnings('ignore')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import cv2
import sys
import random
import math
import re
import time
import numpy as np
import tensorflow as tf
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from sklearn.metrics import confusion_matrix
import skimage
import glob
import itertools
ROOT_DIR = os.getcwd()
sys.path.append(ROOT_DIR)
from mrcnn import utils
from mrcnn import visualize
from mrcnn.visualize import display_images
import mrcnn.model as modellib
from mrcnn.model import log
from mrcnn import parse_args
args = parse_args.parse_args()
sys.path.append(os.path.join("train"))
import dataset
import training
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
weight_path = args.weight
config = training.CustomConfig()
dataset_dir = os.path.join(ROOT_DIR, args.dataset)
class InferenceConfig(config.__class__):
GPU_COUNT = 1
IMAGES_PER_GPU = 1
config = InferenceConfig()
config.display()
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR,
config=config)
model.load_weights(weight_path, by_name=True)
dataset = dataset.CustomDataset()
dataset.load_custom(dataset_dir, "test")
dataset.prepare()
print("Images: {}\nClasses: {}".format(len(dataset.image_ids), dataset.class_names))
mAP_pascal = []
mAP_coco = []
mprecision = []
mrecall = []
moverlap = []
for image_id in dataset.image_ids:
image, image_meta, gt_class_id, gt_bbox, gt_mask =\
modellib.load_image_gt(dataset, config,
image_id, use_mini_mask=False)
molded_images = np.expand_dims(modellib.mold_image(image, config), 0)
results = model.detect([image], verbose=0)
r = results[0]
index = [x for x in range(len(r['class_ids'])) if r['class_ids'][x] <= 4]
AP_pascal, precision, recall, overlap =utils.compute_ap(gt_bbox, gt_class_id, gt_mask,
r["rois"][index], r["class_ids"][index], r["scores"][index], r['masks'][...,index])
AP_coco = utils.compute_ap_range(gt_bbox, gt_class_id, gt_mask,
r["rois"][index], r["class_ids"][index], r["scores"][index], r['masks'][...,index])
# if r["rois"].shape[0]:
# # Precision-Recall curve
# visualize.plot_precision_recall(AP, precision, recall)
# # Grid of ground truth objects and their predictions
# visualize.plot_overlaps(gt_class_id, r['class_ids'], r['scores'], overlap, dataset.class_names)
mAP_pascal.append(AP_pascal)
mAP_coco.append(AP_coco)
mprecision.append(precision)
mrecall.append(recall)
moverlap.append(overlap)
print("mAP PASCAL",np.mean(mAP_pascal) * 100,"%")
print("mAP COCO:",np.mean(mAP_coco) * 100,"%")
print("mean Precision: ", np.mean(mprecision) * 100, "%")
print("mean Recall: ", np.mean(mrecall) * 100, "%")
print("mean Overlaps: ", np.mean(moverlap) * 100, "%")