Skip to content

Latest commit

 

History

History
14 lines (8 loc) · 851 Bytes

README.md

File metadata and controls

14 lines (8 loc) · 851 Bytes

Bayesian Optimization

A simple implementation code of Bayesian Optimization (BayesOpt) on NumPy and SciPy with Gaussian Process as the surrogate model and Expected Improvement as acquisition function for black-box optimization.

The main idea of the algorithm is to build a statistical surrogate model (distribution over function) and sample more data via a cheap-optimized acquisition function to update itself via Bayesian theorem, thus locating the global optimum of the black-box function.

Illustration of how BayesOpt works:

Theoretical background

  • My blog about Bayesian Optimization
  • My slide about Bayesian Optimization