-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_cluster.py
226 lines (157 loc) · 6.91 KB
/
evaluate_cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from sklearn.metrics import f1_score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import average_precision_score
from sklearn import metrics
from munkres import Munkres, print_matrix
from sklearn.cluster import KMeans, SpectralClustering
import numpy as np
class linkpred_metrics():
def __init__(self, edges_pos, edges_neg):
self.edges_pos = edges_pos
self.edges_neg = edges_neg
def get_roc_score(self, emb, feas):
# if emb is None:
# feed_dict.update({placeholders['dropout']: 0})
# emb = sess.run(model.z_mean, feed_dict=feed_dict)
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# Predict on test set of edges
adj_rec = np.dot(emb, emb.T)
preds = []
pos = []
for e in self.edges_pos:
preds.append(sigmoid(adj_rec[e[0], e[1]]))
pos.append(feas['adj_orig'][e[0], e[1]])
preds_neg = []
neg = []
for e in self.edges_neg:
preds_neg.append(sigmoid(adj_rec[e[0], e[1]]))
neg.append(feas['adj_orig'][e[0], e[1]])
preds_all = np.hstack([preds, preds_neg])
labels_all = np.hstack([np.ones(len(preds)), np.zeros(len(preds))])
roc_score = roc_auc_score(labels_all, preds_all)
ap_score = average_precision_score(labels_all, preds_all)
return roc_score, ap_score, emb
class clustering_metrics():
def __init__(self, true_label, predict_label):
self.true_label = true_label
self.pred_label = predict_label
def clusteringAcc(self):
# best mapping between true_label and predict label
l1 = list(set(self.true_label))
numclass1 = len(l1)
l2 = list(set(self.pred_label))
numclass2 = len(l2)
if numclass1 != numclass2:
print('Class Not equal, Error!!!!')
return 0
cost = np.zeros((numclass1, numclass2), dtype=int)
for i, c1 in enumerate(l1):
mps = [i1 for i1, e1 in enumerate(self.true_label) if e1 == c1]
for j, c2 in enumerate(l2):
mps_d = [i1 for i1 in mps if self.pred_label[i1] == c2]
cost[i][j] = len(mps_d)
# match two clustering results by Munkres algorithm
m = Munkres()
cost = cost.__neg__().tolist()
indexes = m.compute(cost)
# get the match results
new_predict = np.zeros(len(self.pred_label))
for i, c in enumerate(l1):
# correponding label in l2:
c2 = l2[indexes[i][1]]
# ai is the index with label==c2 in the pred_label list
ai = [ind for ind, elm in enumerate(self.pred_label) if elm == c2]
new_predict[ai] = c
acc = metrics.accuracy_score(self.true_label, new_predict)
f1_macro = metrics.f1_score(self.true_label, new_predict, average='macro')
precision_macro = metrics.precision_score(self.true_label, new_predict, average='macro')
recall_macro = metrics.recall_score(self.true_label, new_predict, average='macro')
f1_micro = metrics.f1_score(self.true_label, new_predict, average='micro')
precision_micro = metrics.precision_score(self.true_label, new_predict, average='micro')
recall_micro = metrics.recall_score(self.true_label, new_predict, average='micro')
return acc, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro
def evaluationClusterModelFromLabel(self):
nmi = metrics.normalized_mutual_info_score(self.true_label, self.pred_label)
adjscore = metrics.adjusted_rand_score(self.true_label, self.pred_label)
acc, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro = self.clusteringAcc()
print('ACC=%f, f1_macro=%f, precision_macro=%f, recall_macro=%f, f1_micro=%f, precision_micro=%f, recall_micro=%f, NMI=%f, ADJ_RAND_SCORE=%f' % (acc, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro, nmi, adjscore))
fh = open('recoder.txt', 'a')
fh.write('ACC=%f, f1_macro=%f, precision_macro=%f, recall_macro=%f, f1_micro=%f, precision_micro=%f, recall_micro=%f, NMI=%f, ADJ_RAND_SCORE=%f' % (acc, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro, nmi, adjscore) )
fh.write('\r\n')
fh.flush()
fh.close()
return acc, nmi, adjscore
#kmeans
#embeddings_file = 'cora/cora.id_view2_0.7.128d.txt'
#embeddings_file = 'cora/cora.id_view2_0.7.64d.txt'
#embeddings_file = 'cora/cora.id_view2_0.7.128d_good2.txt'
#content_file = 'cora/cora.content'
#embeddings_file = 'citeseer/citeseer.id_view2_0.7.128d.txt'
#embeddings_file = 'citeseer/citeseer.id_view2_0.7.64d.txt'
#embeddings_file = 'citeseer/citeseer.id_view2_0.7.32d.txt'
#embeddings_file = 'citeseer/citeseer.id_view2_0.7.16d.txt'
embeddings_file = 'citeseer/citeseer.id_view2_0.7.64d.txt'
content_file = 'citeseer/citeseer.content'
#embeddings_file = 'pubmed/pubmed.id_view2_0.7.64d.txt'
#content_file = 'pubmed/pubmed.content'
embeddings = list()
with open(embeddings_file) as f_emb:
for line in f_emb.readlines():
values = line.split('\t')
emb = list()
for i in range(1,len(values)):
emb.append(values[i].strip())
embeddings.append(emb)
#print(embeddings[0])
set_lbl = set()
true_labels = list()
true_labels_idx = list()
lbl2idx = {}
cnt = 0
with open(content_file) as f_cnt:
for line in f_cnt.readlines():
values = line.split('\t')
lbl = values[len(values)-1].strip()
set_lbl.add(lbl)
true_labels.append(lbl)
if lbl not in lbl2idx:
lbl2idx[lbl] = cnt
cnt += 1
#print(set_lbl)
#print(len(set_lbl))
#print(len(true_labels))
#print(lbl2idx)
for l in true_labels:
idx = lbl2idx[l]
true_labels_idx.append(idx)
n_clusters = len(set_lbl) #7 for cora 6 for citeseer
print(n_clusters)
#for visualization
#with open('index_clusters_labels','w') as f_icl:
# for i in range(len(true_labels_idx)):
# f_icl.write(str(i)+'\t'+str(true_labels_idx[i])+'\n')
array_embeddings = np.array(embeddings)
#print(array_embeddings)
kmeans = KMeans(n_clusters=n_clusters, n_init = 20, max_iter=300,algorithm='auto').fit(array_embeddings)
predict_labels = kmeans.predict(array_embeddings)
#kmeans = SpectralClustering(n_clusters=n_clusters,affinity='nearest_neighbors')
#predict_labels = kmeans.fit_predict(array_embeddings)
#print(predict_labels)
#print(kmeans.labels_)
a = list()
a.append(1)
a.append(2)
a.append(3)
a.append(4)
a.append(4)
a.append(4)
b = list()
b.append(1)
b.append(2)
b.append(3)
b.append(4)
b.append(3)
b.append(3)
cm = clustering_metrics(true_labels_idx,predict_labels)
cm.evaluationClusterModelFromLabel()