forked from wjchaoGit/Group-Activity-Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvolleyball.py
executable file
·253 lines (190 loc) · 7.94 KB
/
volleyball.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import numpy as np
import skimage.io
import skimage.transform
import torch
import torchvision.transforms as transforms
from torch.utils import data
import torchvision.models as models
from PIL import Image
import random
import sys
"""
Reference:
https://github.com/cvlab-epfl/social-scene-understanding/blob/master/volleyball.py
"""
ACTIVITIES = ['r_set', 'r_spike', 'r-pass', 'r_winpoint',
'l_set', 'l-spike', 'l-pass', 'l_winpoint']
NUM_ACTIVITIES = 8
ACTIONS = ['blocking', 'digging', 'falling', 'jumping',
'moving', 'setting', 'spiking', 'standing',
'waiting']
NUM_ACTIONS = 9
def volley_read_annotations(path):
"""
reading annotations for the given sequence
"""
annotations = {}
gact_to_id = {name: i for i, name in enumerate(ACTIVITIES)}
act_to_id = {name: i for i, name in enumerate(ACTIONS)}
with open(path) as f:
for l in f.readlines():
values = l[:-1].split(' ')
file_name = values[0]
activity = gact_to_id[values[1]]
values = values[2:]
num_people = len(values) // 5
action_names = values[4::5]
actions = [act_to_id[name]
for name in action_names]
def _read_bbox(xywh):
x, y, w, h = map(int, xywh)
return y, x, y+h, x+w
bboxes = np.array([_read_bbox(values[i:i+4])
for i in range(0, 5*num_people, 5)])
fid = int(file_name.split('.')[0])
annotations[fid] = {
'file_name': file_name,
'group_activity': activity,
'actions': actions,
'bboxes': bboxes,
}
return annotations
def volley_read_dataset(path, seqs):
data = {}
for sid in seqs:
data[sid] = volley_read_annotations(path + '/%d/annotations.txt' % sid)
return data
def volley_all_frames(data):
frames = []
for sid, anns in data.items():
for fid, ann in anns.items():
frames.append((sid, fid))
return frames
def volley_random_frames(data, num_frames):
frames = []
for sid in np.random.choice(list(data.keys()), num_frames):
fid = int(np.random.choice(list(data[sid]), []))
frames.append((sid, fid))
return frames
def volley_frames_around(frame, num_before=5, num_after=4):
sid, src_fid = frame
return [(sid, src_fid, fid)
for fid in range(src_fid-num_before, src_fid+num_after+1)]
def load_samples_sequence(anns,tracks,images_path,frames,image_size,num_boxes=12,):
"""
load samples of a bath
Returns:
pytorch tensors
"""
images, boxes, boxes_idx = [], [], []
activities, actions = [], []
for i, (sid, src_fid, fid) in enumerate(frames):
#img=skimage.io.imread(images_path + '/%d/%d/%d.jpg' % (sid, src_fid, fid))
#img=skimage.transform.resize(img,(720, 1280),anti_aliasing=True)
img = Image.open(images_path + '/%d/%d/%d.jpg' % (sid, src_fid, fid))
img=transforms.functional.resize(img,image_size)
img=np.array(img)
# H,W,3 -> 3,H,W
img=img.transpose(2,0,1)
images.append(img)
boxes.append(tracks[(sid, src_fid)][fid])
actions.append(anns[sid][src_fid]['actions'])
if len(boxes[-1]) != num_boxes:
boxes[-1] = np.vstack([boxes[-1], boxes[-1][:num_boxes-len(boxes[-1])]])
actions[-1] = actions[-1] + actions[-1][:num_boxes-len(actions[-1])]
boxes_idx.append(i * np.ones(num_boxes, dtype=np.int32))
activities.append(anns[sid][src_fid]['group_activity'])
images = np.stack(images)
activities = np.array(activities, dtype=np.int32)
bboxes = np.vstack(boxes).reshape([-1, num_boxes, 4])
bboxes_idx = np.hstack(boxes_idx).reshape([-1, num_boxes])
actions = np.hstack(actions).reshape([-1, num_boxes])
#convert to pytorch tensor
images=torch.from_numpy(images).float()
bboxes=torch.from_numpy(bboxes).float()
bboxes_idx=torch.from_numpy(bboxes_idx).int()
actions=torch.from_numpy(actions).long()
activities=torch.from_numpy(activities).long()
return images, bboxes, bboxes_idx, actions, activities
class VolleyballDataset(data.Dataset):
"""
Characterize volleyball dataset for pytorch
"""
def __init__(self,anns,tracks,frames,images_path,image_size,feature_size,num_boxes=12,num_before=4,num_after=4,is_training=True,is_finetune=False):
self.anns=anns
self.tracks=tracks
self.frames=frames
self.images_path=images_path
self.image_size=image_size
self.feature_size=feature_size
self.num_boxes=num_boxes
self.num_before=num_before
self.num_after=num_after
self.is_training=is_training
self.is_finetune=is_finetune
def __len__(self):
"""
Return the total number of samples
"""
return len(self.frames)
def __getitem__(self,index):
"""
Generate one sample of the dataset
"""
select_frames=self.volley_frames_sample(self.frames[index])
sample=self.load_samples_sequence(select_frames)
return sample
def volley_frames_sample(self,frame):
sid, src_fid = frame
if self.is_finetune:
if self.is_training:
fid=random.randint(src_fid-self.num_before, src_fid+self.num_after)
return [(sid, src_fid, fid)]
else:
return [(sid, src_fid, fid)
for fid in range(src_fid-self.num_before, src_fid+self.num_after+1)]
else:
if self.is_training:
sample_frames=random.sample(range(src_fid-self.num_before, src_fid+self.num_after+1), 3)
return [(sid, src_fid, fid)
for fid in sample_frames]
else:
return [(sid, src_fid, fid)
for fid in [src_fid-3,src_fid,src_fid+3, src_fid-4,src_fid-1,src_fid+2, src_fid-2,src_fid+1,src_fid+4 ]]
def load_samples_sequence(self,select_frames):
"""
load samples sequence
Returns:
pytorch tensors
"""
OH, OW=self.feature_size
images, boxes = [], []
activities, actions = [], []
for i, (sid, src_fid, fid) in enumerate(select_frames):
img = Image.open(self.images_path + '/%d/%d/%d.jpg' % (sid, src_fid, fid))
img=transforms.functional.resize(img,self.image_size)
img=np.array(img)
# H,W,3 -> 3,H,W
img=img.transpose(2,0,1)
images.append(img)
temp_boxes=np.ones_like(self.tracks[(sid, src_fid)][fid])
for i,track in enumerate(self.tracks[(sid, src_fid)][fid]):
y1,x1,y2,x2 = track
w1,h1,w2,h2 = x1*OW, y1*OH, x2*OW, y2*OH
temp_boxes[i]=np.array([w1,h1,w2,h2])
boxes.append(temp_boxes)
actions.append(self.anns[sid][src_fid]['actions'])
if len(boxes[-1]) != self.num_boxes:
boxes[-1] = np.vstack([boxes[-1], boxes[-1][:self.num_boxes-len(boxes[-1])]])
actions[-1] = actions[-1] + actions[-1][:self.num_boxes-len(actions[-1])]
activities.append(self.anns[sid][src_fid]['group_activity'])
images = np.stack(images)
activities = np.array(activities, dtype=np.int32)
bboxes = np.vstack(boxes).reshape([-1, self.num_boxes, 4])
actions = np.hstack(actions).reshape([-1, self.num_boxes])
#convert to pytorch tensor
images=torch.from_numpy(images).float()
bboxes=torch.from_numpy(bboxes).float()
actions=torch.from_numpy(actions).long()
activities=torch.from_numpy(activities).long()
return images, bboxes, actions, activities