You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
RepairLLaMA: Efficient Representations and Fine-Tuned Adapters for Program Repair
Automated Program Repair (APR) has evolved significantly with the advent of Large Language Models (LLMs). Fine-tuning LLMs for program repair is a recent avenue of research, with many dimensions which have not been explored. Existing work mostly fine-tune LLMs with naive code representations and does not scale to frontier models. To address this problem, we propose RepairLLaMA, a novel program repair approach that 1) identifies optimal code representations for APR with fine-tuned models, and 2) pioneers state-of-the-art parameter-efficient fine-tuning technique (PEFT) for program repair. This results in RepairLLaMA producing a highly effective `program repair adapter' for fixing bugs with AI. Our experiments demonstrate the validity of both concepts. First, fine-tuning adapters with program repair specific code representations enables the model to use meaningful repair signals and produce better patches. Second, parameter-efficient fine-tuning helps fine-tuning to converge and clearly contributes to the effectiveness of RepairLLaMA in fixing bugs outside the fine-tuning data distribution. Overall, RepairLLaMA correctly fixes 144 Defects4J v2 and 109 HumanEval-Java bugs, outperforming all baselines.
DBLP key: [e.g. journals/corr/abs-2312-15698]
The text was updated successfully, but these errors were encountered:
Thanks! According to the current policy, we only add peer-reviewed papers. We may change it later, but for now I will wait until it appears in a conference/journal.
I would like to add the following publication:
RepairLLaMA: Efficient Representations and Fine-Tuned Adapters for Program Repair
Automated Program Repair (APR) has evolved significantly with the advent of Large Language Models (LLMs). Fine-tuning LLMs for program repair is a recent avenue of research, with many dimensions which have not been explored. Existing work mostly fine-tune LLMs with naive code representations and does not scale to frontier models. To address this problem, we propose RepairLLaMA, a novel program repair approach that 1) identifies optimal code representations for APR with fine-tuned models, and 2) pioneers state-of-the-art parameter-efficient fine-tuning technique (PEFT) for program repair. This results in RepairLLaMA producing a highly effective `program repair adapter' for fixing bugs with AI. Our experiments demonstrate the validity of both concepts. First, fine-tuning adapters with program repair specific code representations enables the model to use meaningful repair signals and produce better patches. Second, parameter-efficient fine-tuning helps fine-tuning to converge and clearly contributes to the effectiveness of RepairLLaMA in fixing bugs outside the fine-tuning data distribution. Overall, RepairLLaMA correctly fixes 144 Defects4J v2 and 109 HumanEval-Java bugs, outperforming all baselines.
The text was updated successfully, but these errors were encountered: