-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBatchNorm_ConvNet.py
171 lines (138 loc) · 5.04 KB
/
BatchNorm_ConvNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
from torch.nn.modules import batchnorm
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import time
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#Hyperparameters
num_epochs = 10
inputs = 28*28
batch_size = 200
learning_rate = 1.5
def batchNormalization(X, gamma, beta, moving_mean, moving_var, eps, momentum):
"""
X - dataset
gamma - scale parameter
beta - shift parameter
moving_mean - used during inference
moving_var - used during inference
"""
# Checking if not training mode
if not torch.is_grad_enabled():
X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4)
#Feed-Forward layer
if len(X.shape) == 2:
mean = X.mean(dim=0)
var = ((X - mean)**2).mean(dim=0)
else:
#Convolutional Layer
mean = X.mean(dim=(0, 2, 3), keepdim=True)
var = ((X - mean)**2).mean(dim=(0, 2, 3), keepdim=True)
X_hat = (X - mean) / torch.sqrt(var + eps)
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta
return Y, moving_mean.data, moving_var.data
class BatchNorm(nn.Module):
def __init__(self, num_features, num_dims):
super().__init__()
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
self.gamma = nn.Parameter(torch.ones(shape))
self.beta = nn.Parameter(torch.zeros(shape))
self.moving_mean = torch.zeros(shape)
self.moving_var = torch.ones(shape)
def forward(self, X):
if self.moving_mean.device != X.device:
self.moving_mean = self.moving_mean.to(X.device)
self.moving_var = self.moving_var.to(X.device)
Y, self.moving_mean, self.moving_var = batchNormalization(
X, self.gamma, self.beta, self.moving_mean, self.moving_var,
eps=1e-5, momentum=0.9)
return Y
class LeNet_BN(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5, bias=False),
BatchNorm(6, num_dims=4),
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5, bias=False),
BatchNorm(16, num_dims=4),
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Flatten())
self.fc = nn.Sequential(
nn.Linear(16 * 4 * 4, 120, bias=False),
BatchNorm(120, num_dims=2),
nn.Sigmoid(),
nn.Linear(120, 84, bias=False),
BatchNorm(84, num_dims=2),
nn.Sigmoid(),
nn.Linear(84, 10, bias=False))
def forward(self, X):
out = self.conv(X)
out = self.fc(out)
return out
#datasets
path = "/home/mayur/Desktop/Pytorch/data"
train_dataset = torchvision.datasets.MNIST(root=path, train=True,
transform = transforms.ToTensor(),
download=False)
test_dataset = torchvision.datasets.MNIST(root=path, train=False,
transform = transforms.ToTensor(),
download=False)
train_dataloader = torch.utils.data.DataLoader(dataset = train_dataset,
batch_size=batch_size,
shuffle=True)
test_dataloader = torch.utils.data.DataLoader(dataset = test_dataset,
batch_size=batch_size,
shuffle=True)
model = LeNet_BN().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
total_step = len(train_dataloader)
Loss = []
start_time = time.time()
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_dataloader):
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
Loss.append(loss.cpu().detach().numpy())
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_dataloader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy: {(correct*100)/total}')
print(f'Total Number of Parameters of LeNet with BatchNorm is {sum(p.numel() for p in model.parameters())}') #44878
print(f'Total time taken: {time.time() - start_time}')
plt.scatter(range(len(Loss)), Loss, color='blue', label='Loss')
plt.title("Loss Over Iterations")
plt.legend()
plt.show()