-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
213 lines (187 loc) · 5.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import collections
import os
import pickle
import time
from pathlib import Path
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from dataset.vqa import VQADataset, VQAEvaluator, VQATorchDataset
from learner import Learner
from models.lxmert_adaptive import VQAModel_Adaptive
from optimizers.lamb import Lamb
from utils import load_obj_tsv
home = str(Path.home())
parser = argparse.ArgumentParser()
parser.add_argument(
"--bs", default=128, type=int, required=True, help="batch size",
)
parser.add_argument(
"--epochs", type=int, required=False, help="epochs",
)
parser.add_argument(
"--tiny", action="store_true", help="run on a sample data",
)
parser.add_argument(
"--adaptive", action="store_true", help="Use Adaptive Attention Span",
)
parser.add_argument(
"--sparse", action="store_true", help="Use Adaptive Attention Span",
)
parser.add_argument(
"--layerdrop", action="store_true", help="Use Adaptive Attention Span",
)
parser.add_argument(
"--load_model",
type=str,
default=None,
help="Load the model (usually the fine-tuned model)",
)
parser.add_argument(
"--test", action="store_true", help="Run only evaluation",
)
args = parser.parse_args()
print(args)
home = str(Path.home())
MSCOCO_IMGFEAT_ROOT = home + "/data/mscoco_imgfeat/"
VQA_DATA_ROOT = home + "/data/vqa/"
load_lxmert_qa_path = home + "/snap/pretrained/model"
SPLIT2NAME = {
"train": "train2014",
"valid": "val2014",
"minival": "val2014",
"nominival": "val2014",
"test": "test2015",
}
torch.cuda.is_available()
DataTuple = collections.namedtuple("DataTuple", "dataset loader evaluator")
num_workers = 0 if torch.cuda.is_available() else 1
def get_data_tuple(
path: str,
mscoco_path: str,
splits: str,
tiny: bool,
bs: int,
shuffle=False,
drop_last=False,
) -> DataTuple:
dset = VQADataset(path, splits)
tset = VQATorchDataset(dset, mscoco_path, tiny)
evaluator = VQAEvaluator(dset)
pin_memory = True if torch.cuda.is_available() else False
data_loader = DataLoader(
tset,
batch_size=bs,
shuffle=shuffle,
num_workers=num_workers,
drop_last=drop_last,
pin_memory=pin_memory,
)
return DataTuple(dataset=dset, loader=data_loader, evaluator=evaluator)
if not args.test:
print("Training and Validation will be performed")
train_tuple = get_data_tuple(
VQA_DATA_ROOT,
MSCOCO_IMGFEAT_ROOT,
"train,nominival",
args.tiny,
args.bs,
False,
True,
)
valid_tuple = get_data_tuple(
VQA_DATA_ROOT, MSCOCO_IMGFEAT_ROOT, "minival", args.tiny, args.bs, False, True
)
test_tuple = None
else:
print("Only Testing will be performed")
train_tuple = None
valid_tuple = None
test_tuple = get_data_tuple(
VQA_DATA_ROOT,
MSCOCO_IMGFEAT_ROOT,
"test",
args.tiny,
args.bs,
shuffle=False,
drop_last=False,
)
params = {
"adapt_span_enabled": args.adaptive,
"attn_span": 1024,
"adapt_span_loss_coeff": 0.000005,
"adapt_span_ramp": 32,
"adapt_span_init": 0.002,
"adapt_span_cache": True,
"nb_heads": 12,
"bs": args.bs,
"mask_size": [20, 36],
"sparse_enabled": args.sparse,
"num_attention_heads": 4,
"layer_sizes": {"lang": 9, "cross": 5, "vision": 5},
"from_scratch": False,
"layerdrop_enabled": args.layerdrop,
"layerdrop_num_layers": 1,
}
model = VQAModel_Adaptive(3129, params)
data_tuple_dict = {
"train_tuple": train_tuple,
"valid_tuple": valid_tuple,
"test_tuple": test_tuple,
}
config = {
"adaptive_enable": args.adaptive,
"sparse_enable": args.sparse,
"measure_flops": False,
"load_model": args.load_model,
}
learn = Learner(model, data_tuple_dict, config)
if args.load_model != None:
print("Using Specified Model's weights")
learn.load(home + "/snap/" + args.load_model)
print("Weights loaded successfully")
if not args.test:
#############################
from datetime import datetime
present_time = datetime.now().time() # time object
present_time = present_time.strftime("%H:%M:%S")
log_str = "######################################################################\n"
log_str += "\n\nTime: " + str(present_time)
log_str += (
"\nSettings: "
+ "Sparse: "
+ str(args.sparse)
+ "\t"
+ "Adaptive Span: "
+ str(args.adaptive)
+ "\t"
+ "Tiny: "
+ str(args.tiny)
+ "\t"
+ "Batch size: "
+ str(args.bs)
+ "\n"
)
from pathlib import Path
home = str(Path.home())
output = home + "/snap/"
t0 = time.time()
with open(output + "/log.log", "a") as f:
f.write(log_str)
f.flush()
##############################
learn.train(args.epochs)
##############################
elapsed_time = time.time() - t0
log_str = str(elapsed_time)
log_str += (
"\n#####################################################################\n"
)
with open(output + "/log.log", "a") as f:
f.write(log_str)
f.flush()
else:
learn.predict(test_tuple, dump=home + "/snap/test_predict.json")