forked from UFund-Me/Qbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStochRSI.py
193 lines (157 loc) · 5.87 KB
/
StochRSI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
## 🔗 ref https://mp.weixin.qq.com/s/MiG09Z3jDLFQhcncJ9UBOw
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import yfinance as yf
def calcRSI(data, P=14):
# Calculate gains and losses
data['diff_close'] = data['Close'] - data['Close'].shift(1)
data['gain'] = np.where(data['diff_close']>0,
data['diff_close'], 0)
data['loss'] = np.where(data['diff_close']<0,
np.abs(data['diff_close']), 0)
# Get initial values
data[['init_avg_gain', 'init_avg_loss']] = data[
['gain', 'loss']].rolling(P).mean()
# Calculate smoothed avg gains and losses for all t > P
avg_gain = np.zeros(len(data))
avg_loss = np.zeros(len(data))
for i, _row in enumerate(data.iterrows()):
row = _row[1]
if i < P - 1:
last_row = row.copy()
continue
elif i == P-1:
avg_gain[i] += row['init_avg_gain']
avg_loss[i] += row['init_avg_loss']
else:
avg_gain[i] += ((P - 1) * avg_gain[i-1] + row['gain']) / P
avg_loss[i] += ((P - 1) * avg_loss[i-1] + row['loss']) / P
last_row = row.copy()
data['avg_gain'] = avg_gain
data['avg_loss'] = avg_loss
# Calculate RS and RSI
data['RS'] = data['avg_gain'] / data['avg_loss']
data['RSI'] = 100 - 100 / (1 + data['RS'])
return data
def calcStochOscillator(data, N=14):
data['low_N'] = data['RSI'].rolling(N).min()
data['high_N'] = data['RSI'].rolling(N).max()
data['StochRSI'] = 100 * (data['RSI'] - data['low_N']) / (data['high_N'] - data['low_N'])
return data
def calcStochRSI(data, P=14, N=14):
data = calcRSI(data, P)
data = calcStochOscillator(data, N)
return data
def calcReturns(df):
# Helper function to avoid repeating too much code
df['returns'] = df['Close'] / df['Close'].shift(1)
df['log_returns'] = np.log(df['returns'])
df['strat_returns'] = df['position'].shift(1) * df['returns']
df['strat_log_returns'] = df['position'].shift(1) * df['log_returns']
df['cum_returns'] = np.exp(df['log_returns'].cumsum()) - 1
df['strat_cum_returns'] = np.exp(df['strat_log_returns'].cumsum()) / - 1
df['peak'] = df['cum_returns'].cummax()
df['strat_peak'] = df['strat_cum_returns'].cummax()
return df
def StochRSIReversionStrategy(data, P=14, N=14, short_level=80,
buy_level=20, shorts=True):
'''
Buys when the StochRSI is oversold and sells when it's
overbought
'''
df = calcStochRSI(data, P, N)
df['position'] = np.nan
df['position'] = np.where(df['StochRSI']<buy_level, 1,
df['position'])
if shorts:
df['position'] = np.where(df['StochRSI']>short_level, -1,
df['position'])
else:
df['position'] = np.where(df['StochRSI']>short_level, 0,
df['position'])
df['position'] = df['position'].ffill().fillna(0)
return calcReturns(df)
table = pd.read_html(
'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies')
df = table[0]
syms = df['Symbol']
# Sample symbols
ticker = np.random.choice(syms.values)
print(f"Ticker Symbol: {ticker}")
start = '2000-01-01'
end = '2020-12-31'
# Get Data
yfObj = yf.Ticker(ticker)
data = yfObj.history(start=start, end=end)
data.drop(['Open', 'High', 'Low', 'Volume', 'Dividends',
'Stock Splits'], inplace=True, axis=1)
# Run test
df_rev = StochRSIReversionStrategy(data.copy())
# Plot results
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
fig, ax = plt.subplots(2, figsize=(12, 8))
ax[0].plot(df_rev['strat_cum_returns']*100, label='Mean Reversion')
ax[0].plot(df_rev['cum_returns']*100, label='Buy and Hold')
ax[0].set_ylabel('Returns (%)')
ax[0].set_title('Cumulative Returns for Mean Reversion and' +
f' Buy and Hold Strategies for {ticker}')
ax[0].legend(bbox_to_anchor=[1, 0.6])
ax[1].plot(df_rev['StochRSI'], label='StochRSI', linewidth=0.5)
ax[1].plot(df_rev['RSI'], label='RSI', linewidth=1)
ax[1].axhline(80, label='Over Bought', color=colors[1], linestyle=':')
ax[1].axhline(20, label='Over Sold', color=colors[2], linestyle=':')
ax[1].axhline(50, label='Centerline', color='k', linestyle=':')
ax[1].set_ylabel('Stochastic RSI')
ax[1].set_xlabel('Date')
ax[1].set_title(f'Stochastic RSI for {ticker}')
ax[1].legend(bbox_to_anchor=[1, 0.75])
plt.tight_layout()
plt.show()
# Get trades
diff = df_rev['position'].diff().dropna()
trade_idx = diff.index[np.where(diff!=0)]
fig, ax = plt.subplots(1, figsize=(12, 8))
ax.plot(df_rev['Close'], linewidth=1, label=f'{ticker}')
ax.scatter(trade_idx, df_rev.loc[trade_idx]['Close'], c=colors[1],
marker='^', label='Trade')
ax.set_ylabel('Price')
ax.set_title(f'{ticker} Price Chart and Trades for' +
'StochRSI Mean Reversion Strategy')
ax.legend()
plt.show()
def getStratStats(log_returns: pd.Series,
risk_free_rate: float = 0.02):
stats = {}
# Total Returns
stats['tot_returns'] = np.exp(log_returns.sum()) - 1
# Mean Annual Returns
stats['annual_returns'] = np.exp(log_returns.mean() * 252) - 1
# Annual Volatility
stats['annual_volatility'] = log_returns.std() * np.sqrt(252)
# Sortino Ratio
annualized_downside = log_returns.loc[log_returns<0].std() * np.sqrt(252)
stats['sortino_ratio'] = (stats['annual_returns'] -
risk_free_rate) / annualized_downside
# Sharpe Ratio
stats['sharpe_ratio'] = (stats['annual_returns'] -
risk_free_rate) / stats['annual_volatility']
# Max Drawdown
cum_returns = log_returns.cumsum() - 1
peak = cum_returns.cummax()
drawdown = peak - cum_returns
stats['max_drawdown'] = drawdown.max()
# Max Drawdown Duration
strat_dd = drawdown[drawdown==0]
strat_dd_diff = strat_dd.index[1:] - strat_dd.index[:-1]
strat_dd_days = strat_dd_diff.map(lambda x: x.days).values
strat_dd_days = np.hstack([strat_dd_days,
(drawdown.index[-1] - strat_dd.index[-1]).days])
stats['max_drawdown_duration'] = strat_dd_days.max()
return stats
rev_stats = getStratStats(df_rev['strat_log_returns'])
bh_stats = getStratStats(df_rev['log_returns'])
pd.concat([
pd.DataFrame(rev_stats, index=['Mean Reversion']),
pd.DataFrame(bh_stats, index=['Buy and Hold'])])
print(pd)