
Key-Value Exchange Modes:
Put/Commit/{Fence}/Get Semantics

Joshua Hursey (IBM)
David Solt (IBM)

122 July 2020

Two Models for Key-Value Pair Exchange in PMIx

• Primary means of exchanging data in PMIx is via key-value pairs (KVPs)

• Process Related Key-Value Exchange:
• PMIx_Put / PMIx_Commit / PMIx_Fence(COLLECT) / PMIx_Get
• PMIx_Put / PMIx_Commit / PMIx_Fence(Sync) / PMIx_Get
• PMIx_Put / PMIx_Commit / PMIx_Get
• PMIx_Get (for instant-on environments)

• Non-Process Related Key-Value Exchange:
• PMIx_Publish / PMIx_Lookup / PMIx_Unpublish

222 July 2020

Focus here today

Process Related Key-Value Exchange:
Overview
• Four sets of APIs that allow PMIx processes to share key-value pairs:
• PMIx_Put Create a KVP associated with the calling process
• PMIx_Commit Make all KVPs previously 'put' available to other PMIx processes
• PMIx_Fence Synchronize and, optionally, exchange data between a set of processes
• PMIx_Get Access KVPs

• Three wireup models: (modex = module exchange = business card exchange)
• Instant-On: Use only PMIx_Get to access pre-populated connectivity information from

the job-level data. No KVP exchange or synchronization necessary.
• Direct Modex: (Default in PMIx) Data is shared between processes on-demand based on

first access to the remote data using PMIx_Get.
• Full Modex: (Traditional model) A collective fence operation exchanges all of the

committed KVPs to all involved PMIx servers. PMIx_Get calls after the fence operation
may complete faster at the cost of the data exchange and resulting memory footprint.

322 July 2020

PMIx Key-Value Pair Data Realms

• PMIx Key-Value Pairs (KVPs) exist in one of a few different data realms
• User-defined KVPs can only be associated with the process-level data realm
• KVPs in all other data realms are established by the PMIx Server

• PMIx KVP Data Realms
• Node-level: KVPs associated with all processes that share the same node
• Session-level: KVPs associated with the allocated set of resources to this user
• Job/Namespace-Level: KVPs associated with the parallel/distributed job in the session
• Application-Level: KVPs associated with all processes in the job that were launched

together with the same binary (or other defined grouping such as argument set)
• Process-level: KVPs associated with a specific process

422 July 2020

PMIx_Put / PMIx_Store_internal

• PMIx_Put(scope, key, value)
• Prepare a key-value pairs associated with the caller to be shared in the specified scope

• The caller's namespace & rank are automatically stored with this KVP
• The KVP is not accessible to other processes until committed

• scope: PMIX_LOCAL (same node only), PMIX_REMOTE (remote nodes only),
PMIX_GLOBAL (everyone), PMIX_INTERNAL (this process only)

• PMIx_Store_internal(proc, key, value)
• Store a KVP associated with the specified proc for later access by only the calling process
• Useful when storing information about a process that was not gathered with PMIx.

522 July 2020

Node1 RM Daemon
PMIx Server

R0

PMIx
Client

R1

PMIx
Client

Node2RM Daemon
PMIx Server

R2

PMIx
Client

R3

PMIx
Client

PMIx_Commit

• PMIx_Commit()
• Make key-value pairs previously staged with PMIx_Put accessible to other processes

• Those KVPs with PMIX_INTERNAL scope remain cached in the caller-local PMIx client library.
• Those KVPs with PMIX_REMOTE scope are cached only at the PMIx server library and are not

accessible to other PMIx clients on the same node.
• PMIx Client to PMIx Server transmission

• The transmission of data from the client to server occurs without interrupting the RM Daemon
• There is (currently) no commit upcall into the RM Daemon hosting the PMIx Server instance

• The PMIx Server may coordinate with the PMIx clients to create a node-local shared
memory segment for fast access to these KVPs.

622 July 2020

Node1 RM Daemon
PMIx Server

R0

PMIx
Client

R1

PMIx
Client

Node2RM Daemon
PMIx Server

R2

PMIx
Client

R3

PMIx
Client

SM SM

PMIx_Fence / PMIx_Fence_nb

• PMIx_Fence(procs[], nprocs, info[], ninfo)
• Collective barrier operation over the set of processes

• Wildcard can be used for 'all' processes in the namespace
• The ordering and content of the proc[] array defines the fence signature used to match between

multiple, concurrent fence operations
• PMIX_COLLECT_DATA attribute will request the collection of PMIX_REMOTE &

PMIX_GLOBAL scoped committed KVPs during the collective.
• The KVPs are then locally available (via PMIx_Get) to the designated set of the processes.
• In MPI terms, this attribute changes the MPI_Barrier into an MPI_Allgatherv operation.

• Upcall into the RM Daemon (pmix_server_fencenb_fn_t) to exchange the data between
the involved nodes

722 July 2020

Node1 RM Daemon
PMIx Server

R0

PMIx
Client

R1

PMIx
Client

Node2RM Daemon
PMIx Server

R2

PMIx
Client

R3

PMIx
Client

SM SM

PMIx_Get / PMIx_Get_nb

• PMIx_Get(proc, key, info[], ninfo, value)
• Access a key-value pair in the PMIx system

• The proc and info arguments determine the data realm of the KVP (e.g., session, job, proc)
• Reserved keys, get will look in the following places for the requested key (in order)

• Reserved keys are those defined in the PMIx standard (strings prefixed with "pmix")
1. Local PMIx Client cache
2. Local PMIx Server cache, if it is for a different namespace
3. Local PMIx Server cache, if the client asks for a cache refresh (PMIX_GET_REFRESH_CACHE)
4. Return an error (e.g., PMIX_ERR_NOT_FOUND)

822 July 2020

Node1 RM Daemon
PMIx Server

R0

PMIx
Client

R1

PMIx
Client

Node2RM Daemon
PMIx Server

R2

PMIx
Client

R3

PMIx
Client

SM SM

PMIx_Get / PMIx_Get_nb

• PMIx_Get(proc, key, info[], ninfo, value)
• Access a key-value pair in the PMIx system

• The proc and info arguments determine the data realm of the KVP (e.g., session, job, proc)
• Non-reserved keys, get will look in the following places for the requested key (in order)

1. Local PMIx Client cache (PMIX_OPTIONAL attribute used to stop search here)
2. Local PMIx Server cache (PMIX_IMMEDIATE attribute used to stop search here)
3. Target PMIx Server cache (PMIX_TIMEOUT attributed used to limit waiting at remote server)

• If the key is not at the target PMIx Server then PMIx_Get will access the currently committed set of values -
possibly excluding the KVP requested if it was not yet committed

• PMIX_REQUIRED_KEY attribute used to pass the key being waited upon to the RM daemon in the
pmix_server_dmodex_req_fn_t upcall so the target will block until the key is available (or a timeout).

922 July 2020

Node1 RM Daemon
PMIx Server

R0

PMIx
Client

R1

PMIx
Client

Node2RM Daemon
PMIx Server

R2

PMIx
Client

R3

PMIx
Client

SM SM

PMIx_Get / PMIx_Get_nb

• PMIx_Get(proc, key, info[], ninfo, value)
• In a Direct Modex (or if the key is not available locally), the local and target RM daemons

exchange the committed KVPs on-demand. So a PMIx_Get could result in an RPC call.
1. Node1: RM daemon gets the pmix_server_dmodex_req_fn_t upcall requesting KVPs for a proc
2. Node1: RM daemon determines that it needs to contact Node2 for the data and sends a request
3. Node2: RM daemon calls PMIx_server_dmodex_request to access the requested KVP packet
4. Node2: RM daemon sends the KVP data packet to Node1
5. Node1: RM daemon completes the dmodex_req callback with the KVP data packet
6. Node1: PMIx server library makes this data available to the local PMIx clients

• In a Full Modex, the committed KVPs are exchanged during the fence so the PMIx_Get
will likely resolve the key from the local process/server cache (often in shared memory).

1022 July 2020

Node1 RM Daemon
PMIx Server

R0

PMIx
Client

R1

PMIx
Client

Node2RM Daemon
PMIx Server

R2

PMIx
Client

R3

PMIx
Client

SM SM

Key-Value Exchange Modes:
Put/Commit/{Fence}/Get Semantics

22 July 2020 11

Node1 RM Daemon
PMIx Server

R0

PMIx
Client

R1

PMIx
Client

Node2RM Daemon
PMIx Server

R2

PMIx
Client

R3

PMIx
Client

Node1 RM Daemon
PMIx Server

R0

PMIx
Client

R1

PMIx
Client

Node2RM Daemon
PMIx Server

R2

PMIx
Client

R3

PMIx
Client

Node1 RM Daemon
PMIx Server

R0

PMIx
Client

R1

PMIx
Client

Node2RM Daemon
PMIx Server

R2

PMIx
Client

R3

PMIx
Client

1. PMIx_Put 2. PMIx_Commit

3. PMIx_Fence 4. PMIx_Get

Node1 RM Daemon
PMIx Server

R0

PMIx
Client

R1

PMIx
Client

Node2RM Daemon
PMIx Server

R2

PMIx
Client

R3

PMIx
Client

SM SM

SM SM

SM SM

