=l

@Mlxmw

Joshua Hursey (IBM)
David Solt (IBM)

22 July 2020

Two Models for Key-Value Pair Exchange in PMIx

* Primary means of exchanging data in PMIx is via key-value pairs (KVPs)

* Process Related Key-Value Exchange: Focus here today
PMIx_Put / PMIx_Commit / PMIx_Fence(COLLECT) / PMIx_Get
PMIx_Put / PMIx_Commit / PMIx_Fence(Sync) / PMIx_Get
PMIx_Put / PMIx_Commit / PMIx_Get

PMIx_Get (for instant-on environments)

* Non-Process Related Key-Value Exchange:
e PMIx_Publish / PMIx_Lookup / PMIx_Unpublish

==
EPM|X1013 22 July 2020 2
=R D)

Process Related Key-Value Exchange:

Overview

* Four sets of APIs that allow PMiIx processes to share key-value pairs:
* PMIx_Put Create a KVP associated with the calling process
* PMIx_Commit Make all KVPs previously 'put' available to other PMIx processes

* PMIx_Fence Synchronize and, optionally, exchange data between a set of processes
* PMIx_Get Access KVPs

* Three wireup models: (modex = module exchange = business card exchange)

 Instant-On: Use only PMIx_Get to access pre-populated connectivity information from
the job-level data. No KVP exchange or synchronization necessary.

* Direct Modex: (Default in PMIx) Data is shared between processes on-demand based on
first access to the remote data using PMIx_Get.

* Full Modex: (Traditional model) A collective fence operation exchanges all of the
committed KVPs to all involved PMIx servers. PMIx_Get calls after the fence operation
may complete faster at the cost of the data exchange and resulting memory footprint.

=1l
EPMlxlO18 22 July 2020 3
&8

PMIx Key-Value Pair Data Realms

* PMIx Key-Value Pairs (KVPs) exist in one of a few different data realms
» User-defined KVPs can only be associated with the process-level data realm
* KVPs in all other data realms are established by the PMIx Server

e PMIx KVP Data Realms

* Node-level: KVPs associated with all processes that share the same node
» Session-level: KVPs associated with the allocated set of resources to this user
» Job/Namespace-Level: KVPs associated with the parallel/distributed job in the session

* Application-Level: KVPs associated with all processes in the job that were launched
together with the same binary (or other defined grouping such as argument set)

* Process-level: KVPs associated with a specific process

==
EPMIX1018 22 July 2020 4
[E=R)

PMIx_Put / PMIx_Store_internal

* PMIx_Put(scope, key, value)

* Prepare a key-value pairs associated with the caller to be shared in the specified scope
* The caller's namespace & rank are automatically stored with this KVP
* The KVP is not accessible to other processes until committed

e scope: PMIX_LOCAL (same node only), PMIX_REMOTE (remote nodes only),
PMIX_GLOBAL (everyone), PMIX_INTERNAL (this process only)
* PMIx_Store_internal(proc, key, value)
» Store a KVP associated with the specified proc for later access by only the calling process
e Useful when storing information about a process that was not gathered with PMiIx.

@odﬂ RM Daemon RM Daemon Node)

PMiIx

PMIx

PMIx
Client

R3 / 22 July 2020 5

PMIx
Client

R1 j k R2

Client Client
=1l

TLPUMIx 1018 \ RO

PMIx_Commit

* PMIx_Commit()

* Make key-value pairs previously staged with PMIx_Put accessible to other processes
* Those KVPs with PMIX_INTERNAL scope remain cached in the caller-local PMIx client library.

* Those KVPs with PMIX_REMOTE scope are cached only at the PMIx server library and are not
accessible to other PMIx clients on the same node.

* PMIx Client to PMIx Server transmission
* The transmission of data from the client to server occurs without interrupting the RM Daemon
* There is (currently) no commit upcall into the RM Daemon hosting the PMIx Server instance

* The PMIx Server may coordinate with the PMIx clients to create a node-local shared
memory segment for fast access to these KVPs.

PMIx PMIx PMIx PMiIx

Client Client Client Client

E?MIX]_OM RO R1 R2 R3 22 July 2020 6
1588

PMIx_Fence / PMIx_Fence_nb

* PMIx_Fence(procs[], nprocs, info[], ninfo)

 Collective barrier operation over the set of processes
* Wildcard can be used for 'all' processes in the namespace

* The ordering and content of the proc[] array defines the fence signature used to match between
multiple, concurrent fence operations

* PMIX_COLLECT_DATA attribute will request the collection of PMIX_REMOTE &
PMIX_GLOBAL scoped committed KVPs during the collective.
* The KVPs are then locally available (via PMIx_Get) to the designated set of the processes.
* In MPI terms, this attribute changes the MPI_Barrier into an MPI_Allgatherv operation.
* Upcall into the RM Daemon (pmix_server _fencenb_ fn_ t) to exchange the data between

the involved nodes
@odel ' Node)

PMIx PMIA °Mix PMIx
Client Client Client Client

@le()m k RO R1 j K R2 R3 / 22 July 2020 7

PMIx_Get / PMIx_Get_nb

* PMIx_Get(proc, key, info[], ninfo, value)

* Access a key-value pair in the PMIx system
* The proc and info arguments determine the data realm of the KVP (e.g., session, job, proc)

» Reserved keys, get will look in the following places for the requested key (in order)
* Reserved keys are those defined in the PMIx standard (strings prefixed with "pmix")

Local PMIx Client cache

Local PMIx Server cache, if it is for a different namespace

Local PMIx Server cache, if the client asks for a cache refresh (PMIX_GET_REFRESH_CACHE)
Return an error (e.g., PMIX_ERR_NOT_FOUND)

s whnN e

=1l
[PMIx1078
1ires

PMIx

Client

RO

‘ RM Daemon i\

PMIx
Client

R1

RM Daemon

PMiIx Server

PMIx
Client

R2

Node)

PMIx
Client

R3

22 July 2020

PMIx_Get / PMIx_Get_nb

* PMIx_Get(proc, key, info[], ninfo, value)

* Access a key-value pair in the PMIx system
* The proc and info arguments determine the data realm of the KVP (e.g., session, job, proc)

* Non-reserved keys, get will look in the following places for the requested key (in order)
1. Local PMIx Client cache (PMIX_OPTIONAL attribute used to stop search here)

2. Local PMIx Server cache (PMIX_IMMEDIATE attribute used to stop search here)

3. Target PMIx Server cache (PMIX_TIMEOUT attributed used to limit waiting at remote server)
* If the key is not at the target PMIx Server then PMIx_Get will access the currently committed set of values -
possibly excluding the KVP requested if it was not yet committed

 PMIX_REQUIRED_KEY attribute used to pass the key being waited upon to the RM daemon in the
pmix_server_dmodex_req_fn_t upcall so the target will block until the key is available (or a timeout).

@odﬂ RM Daemon

PMiIx Server

PMIx PMIx PMIx PMiIx
Client Client Client Client

E?MIX]_OM k RO R1 R2 R3 22 July 2020 9
1588

PMIx_Get / PMIx_Get_nb

* PMIx_Get(proc, key, info[], ninfo, value)

* In a Direct Modex (or if the key is not available locally), the local and target RM daemons
exchange the committed KVPs on-demand. So a PMIx_Get could result in an RPC call.

1.

o hkwWN

Nodel:
Nodel:
Node2:
Node2:
Nodel:
Nodel:

RM daemon gets the pmix_server_dmodex_req_fn_t upcall requesting KVPs for a proc
RM daemon determines that it needs to contact Node2 for the data and sends a request
RM daemon calls PMIx_server_dmodex_request to access the requested KVP packet
RM daemon sends the KVP data packet to Nodel

RM daemon completes the dmodex_req callback with the KVP data packet

PMiIx server library makes this data available to the local PMIx clients

* In a Full Modex, the committed KVPs are exchanged during the fence so the PMIx_Get
will likely resolve the key from the local process/server cache (often in shared memory).

=1l
[PMIx1078
1ires

@odﬂ RM Daemon

PMIx PMIx
Client Client Client Client

k RO R1 R2 R3 22 July 2020 10

Key-Value Exchange Modes:

Put/Commit/{Fence}/Get Semantics

1. PMIx_Put 2. PMIx_Commit
RM Daemon RM Daemon

@odel RM Daemon RM Daemon Node) @odﬂ
PMIx Server PMIx Server

PMIx PMix

PMIx PMiIx PMIx PMIx PMIx PMIx
Client Client Client Client Client Client Client Client

\ RO R1) R2 R3 RO R1 R2 R3
3. PMIx_Fence 4. PMIx_Get

/Nodel RM Daemon 4t Node2) /Nodel RM Daemon =y+***+{%RM Daemon Node2)
@ _PMIx Server o "'.
-
-

PMIx PMIX °Mix PMIx
Client Client Client Client

PMIx PMIx
Client Client Client Client

k RO R1 j k R2 R3 / K RO R1 / R2 R3
@walg 22 July 2020 11
tlssy

