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Two Models for Key-Value Pair Exchange in PMIx

• Primary means of exchanging data in PMIx is via key-value pairs (KVPs)

• Process Related Key-Value Exchange:
• PMIx_Put / PMIx_Commit / PMIx_Fence(COLLECT) / PMIx_Get
• PMIx_Put / PMIx_Commit / PMIx_Fence(Sync) / PMIx_Get
• PMIx_Put / PMIx_Commit / PMIx_Get
• PMIx_Get (for instant-on environments)

• Non-Process Related Key-Value Exchange:
• PMIx_Publish / PMIx_Lookup / PMIx_Unpublish
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Process Related Key-Value Exchange:
Overview
• Four sets of APIs that allow PMIx processes to share key-value pairs:
• PMIx_Put Create a KVP associated with the calling process
• PMIx_Commit Make all KVPs previously 'put' available to other PMIx processes
• PMIx_Fence Synchronize and, optionally, exchange data between a set of processes
• PMIx_Get Access KVPs

• Three wireup models: (modex = module exchange = business card exchange)
• Instant-On: Use only PMIx_Get to access pre-populated connectivity information from 

the job-level data. No KVP exchange or synchronization necessary.
• Direct Modex: (Default in PMIx) Data is shared between processes on-demand based on 

first access to the remote data using PMIx_Get.
• Full Modex: (Traditional model) A collective fence operation exchanges all of the 

committed KVPs to all involved PMIx servers. PMIx_Get calls after the fence operation 
may complete faster at the cost of the data exchange and resulting memory footprint.
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PMIx Key-Value Pair Data Realms

• PMIx Key-Value Pairs (KVPs) exist in one of a few different data realms
• User-defined KVPs can only be associated with the process-level data realm
• KVPs in all other data realms are established by the PMIx Server

• PMIx KVP Data Realms
• Node-level: KVPs associated with all processes that share the same node
• Session-level: KVPs associated with the allocated set of resources to this user
• Job/Namespace-Level: KVPs associated with the parallel/distributed job in the session
• Application-Level: KVPs associated with all processes in the job that were launched 

together with the same binary (or other defined grouping such as argument set)
• Process-level: KVPs associated with a specific process
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PMIx_Put / PMIx_Store_internal

• PMIx_Put( scope, key, value )
• Prepare a key-value pairs associated with the caller to be shared in the specified scope

• The caller's namespace & rank are automatically stored with this KVP
• The KVP is not accessible to other processes until committed

• scope: PMIX_LOCAL (same node only), PMIX_REMOTE (remote nodes only),
PMIX_GLOBAL (everyone), PMIX_INTERNAL (this process only)

• PMIx_Store_internal( proc, key, value )
• Store a KVP associated with the specified proc for later access by only the calling process
• Useful when storing information about a process that was not gathered with PMIx.
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PMIx_Commit

• PMIx_Commit()
• Make key-value pairs previously staged with PMIx_Put accessible to other processes

• Those KVPs with PMIX_INTERNAL scope remain cached in the caller-local PMIx client library.
• Those KVPs with PMIX_REMOTE scope are cached only at the PMIx server library and are not 

accessible to other PMIx clients on the same node.
• PMIx Client to PMIx Server transmission

• The transmission of data from the client to server occurs without interrupting the RM Daemon
• There is (currently) no commit upcall into the RM Daemon hosting the PMIx Server instance

• The PMIx Server may coordinate with the PMIx clients to create a node-local shared 
memory segment for fast access to these KVPs.
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PMIx_Fence / PMIx_Fence_nb

• PMIx_Fence( procs[], nprocs, info[], ninfo )
• Collective barrier operation over the set of processes

• Wildcard can be used for 'all' processes in the namespace
• The ordering and content of the proc[] array defines the fence signature used to match between 

multiple, concurrent fence operations
• PMIX_COLLECT_DATA attribute will request the collection of PMIX_REMOTE & 

PMIX_GLOBAL scoped committed KVPs during the collective.
• The KVPs are then locally available (via PMIx_Get) to the designated set of the processes.
• In MPI terms, this attribute changes the MPI_Barrier into an MPI_Allgatherv operation.

• Upcall into the RM Daemon (pmix_server_fencenb_fn_t) to exchange the data between 
the involved nodes
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PMIx_Get / PMIx_Get_nb

• PMIx_Get( proc, key, info[], ninfo, value )
• Access a key-value pair in the PMIx system

• The proc and info arguments determine the data realm of the KVP (e.g., session, job, proc)
• Reserved keys, get will look in the following places for the requested key (in order)

• Reserved keys are those defined in the PMIx standard (strings prefixed with "pmix")
1. Local PMIx Client cache
2. Local PMIx Server cache, if it is for a different namespace
3. Local PMIx Server cache, if the client asks for a cache refresh (PMIX_GET_REFRESH_CACHE)
4. Return an error (e.g., PMIX_ERR_NOT_FOUND)
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PMIx_Get / PMIx_Get_nb

• PMIx_Get( proc, key, info[], ninfo, value )
• Access a key-value pair in the PMIx system

• The proc and info arguments determine the data realm of the KVP (e.g., session, job, proc)
• Non-reserved keys, get will look in the following places for the requested key (in order)

1. Local PMIx Client cache (PMIX_OPTIONAL attribute used to stop search here)
2. Local PMIx Server cache (PMIX_IMMEDIATE attribute used to stop search here)
3. Target PMIx Server cache (PMIX_TIMEOUT attributed used to limit waiting at remote server)

• If the key is not at the target PMIx Server then PMIx_Get will access the currently committed set of values -
possibly excluding the KVP requested if it was not yet committed

• PMIX_REQUIRED_KEY attribute used to pass the key being waited upon to the RM daemon in the 
pmix_server_dmodex_req_fn_t upcall so the target will block until the key is available (or a timeout).
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PMIx_Get / PMIx_Get_nb

• PMIx_Get( proc, key, info[], ninfo, value )
• In a Direct Modex (or if the key is not available locally), the local and target RM daemons 

exchange the committed KVPs on-demand. So a PMIx_Get could result in an RPC call.
1. Node1: RM daemon gets the pmix_server_dmodex_req_fn_t upcall requesting KVPs for a proc
2. Node1: RM daemon determines that it needs to contact Node2 for the data and sends a request
3. Node2: RM daemon calls PMIx_server_dmodex_request to access the requested KVP packet
4. Node2: RM daemon sends the KVP data packet to Node1
5. Node1: RM daemon completes the dmodex_req callback with the KVP data packet
6. Node1: PMIx server library makes this data available to the local PMIx clients

• In a Full Modex, the committed KVPs are exchanged during the fence so the PMIx_Get
will likely resolve the key from the local process/server cache (often in shared memory).
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3. PMIx_Fence 4. PMIx_Get
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