Skip to content

Files

Latest commit

b3588df · Nov 29, 2017

History

History
29 lines (18 loc) · 1.04 KB

README.md

File metadata and controls

29 lines (18 loc) · 1.04 KB

Overview

Bot using RASA NLU to answer different questions. Using Wolfram Alpha to get answers. Using Wikipedia as failover.

bot.png

Article in my blog describing how it works.

Run it with Docker

docker build -t bot . && docker run -e SLACK_TOKEN=<token> -e WOLFRAM_APP_ID=<app_id> bot

Run with Python 3

Install dependencies from Dockerfile and run:

SLACK_TOKEN=<token> WOLFRAM_APP_ID=<app_id> python3 bot.py

RASA

Create initial intentions - https://rasahq.github.io/rasa-nlu-trainer/. During the Bot start we run training process based on rasa-data.json intentions. Later we work with messages we can parse, also Bot stores all unparsed messages so we can check them later.